10.10.2019

Железо — общая характеристика элемента, химические свойства железа и его соединений


Железо и стали на его основе используются повсеместно в промышленности и обыденной жизни человека. Однако мало кто знает, из чего делают железо, вернее, как его добывают и преобразовывают в сплав стали.

Популярное заблуждение

Для начала определимся с понятиями, поскольку люди часто путаются и не совсем понимают, вообще. Это химический элемент и простое вещество, которое в чистом виде не встречается и не используется. А вот сталь - это сплав на основе железа. Она богата на различные химические элементы, а также содержит углерод в своем составе, который необходим для придания прочности и твердости.

Следовательно, не совсем правильно рассуждать о том, из чего делают железо, так как оно представляет собой химический элемент, который есть в природе. Человек из него делает сталь, которая в дальнейшем может использоваться для изготовления чего-либо: подшипников, кузовов автомобилей, дверей и т. д. Невозможно перечислить все предметы, которые из нее производятся. Итак, ниже мы не будем разбирать, из чего делают железо. Вместо этого поговорим о преобразовании этого элемента в сталь.

Добыча

В России и мире существует множество карьеров, где добывают железную руду. Это огромные и тяжелые камни, которые достаточно сложно достать из карьера, так как они являются частью одной большой горной породы. Непосредственно на карьерах в горную породу закладывают взрывчатку и взрывают ее, после чего огромные куски камней разлетаются в разные стороны. Затем их собирают, грузят на большие самосвалы (типа БелАЗ) и везут на перерабатывающий завод. Из этой горной породы и будет добываться железо.

Иногда, если руда находится на поверхности, то ее вовсе необязательно подрывать. Ее достаточно расколоть на куски любым другим способом, погрузить на самосвал и увезти.

Производство

Итак, теперь мы понимаем, из чего делают железо. Горная порода является сырьем для его добычи. Ее отвозят на перерабатывающее предприятие, загружают в доменную печь и нагревают до температуры 1400-1500 градусов. Эта температура должна держаться в течение определенного времени. Содержащееся в составе горной породы железо плавится и приобретает жидкую форму. Затем его остается разлить в специальные формы. Образовавшиеся шлаки при этом отделяют, а само железо получается чистым. Затем агломерат подают в бункерные чаши, где он продувается потоком воздуха и охлаждается водой.

Есть и другой способ получения железа: горную породу дробят и подают на специальный магнитный сепаратор. Так как железо имеет способность намагничиваться, то минералы остаются на сепараторе, а вся вымывается. Конечно, чтобы железо превратить в металл и придать ему твердую форму, его необходимо легировать с помощью другого компонента - углерода. Его доля в составе очень мала, однако именно благодаря нему металл становится высокопрочным.

Стоит отметить, что в зависимости от объема добавляемого в состав углерода сталь может получаться разной. В частности, она может быть более или менее мягкой. Есть, например, специальная машиностроительная сталь, при изготовлении которой к железу добавляют всего 0,75 % углерода и марганец.

Теперь вы знаете, из чего делают железо и как его преобразовывают в сталь. Конечно, способы описаны весьма поверхностно, но суть они передают. Нужно запомнить, что из горной породы делают железо, из чего далее могут получать сталь.

Производители

На сегодняшний день в разных странах есть крупные месторождения железной руды, которые являются базой для производства мировых запасов стали. В частности, на Россию и Бразилию приходится 18 % мирового на Австралию - 14 %, Украину - 11 %. Самыми крупными экспортерами является Индия, Бразилия, Австралия. Отметим, что цены на металл постоянно меняются. Так, в 2011 году стоимость одной тонны металла составляла 180 долларов США, а к 2016 году была зафиксирована цена в 35 долларов США за тонну.

Заключение

Теперь вы знаете, из чего состоит железо (имеется в и как его производят. Применение этого материала распространено во всем мире, и его значение практически невозможно переоценить, так как используется он в промышленных и бытовых отраслях. К тому же экономика некоторых стран построена на базе изготовления металла и его последующего экспорта.

Мы рассмотрели, из чего состоит сплав. Железо в его составе смешивается с углеродом, и подобная смесь является основной для изготовления большинства известных металлов.

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия).
Простое вещество железо (CAS-номер: 7439-89-6) - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.
На самом деле железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.
В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре - 4,65 % (4-е место после O, Si, Al). Считается также, что железо составляет бо́льшую часть земного ядра.

Происхождение названия

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза, укр. залізо, ст.-слав. желѣзо, болг. желязо, сербохорв. жељезо, польск. żelazo, чеш. železo, словен. železo).
Одна из этимологий связывает праслав. *želězo с греческим словом χαλκός, что означало железо и медь, согласно другой версии *želězo родственно словам *žely «черепаха» и *glazъ «скала», с общей семой «камень». Третья версия предполагает древнее заимствование из неизвестного языка.
Романские языки (итал. ferro, фр. fer, исп. hierro, порт. ferro, рум. fier) продолжают лат. ferrum . Латинское ferrum (Германские языки заимствовали название железа (готск. eisarn,англ. iron, нем. Eisen, нидерл. ijzer,дат. jern, швед. järn) из кельтских.
Пракельтское слово *isarno- (> др.-ирл. iarn, др.-брет. hoiarn), вероятно, восходит к пра-и.е. *h1esh2r-no- «кровавый» с семантическим развитием «кровавый» > «красный» > «железо». Согласно другой гипотезе данное слово восходит к пра-и.е. *(H)ish2ro- «сильный, святой, обладающий сверхъестественной силой».
Древнегреческое слово σίδηρος, возможно, было заимствовано из того же источника, что и славянское, германское и балтийское слова для серебра.
Название природного карбоната железа (сидерита) происходит от лат. sidereus - звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (σίδηρος) для железа и латинское sidus, означающее «звезда», вероятно, имеют общее происхождение.

Получение

В промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
В печи углерод в виде кокса окисляется до монооксида углерода. Данный оксид образуется при горении в недостатке кислорода. В свою очередь, монооксид углерода восстанавливает железо из руды. Чтобы данная реакция шла быстрее, нагретый угарный газ пропускают через оксид железа(III). Флюс добавляется для избавления от нежелательных примесей (в первую очередь от силикатов; например кварц) в добываемой руде. Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Для устранения других примесей используют другие флюсы.
Действие флюса (в данном случае карбонат кальция) заключается в том, что при его нагревании он разлагается до его оксида. Оксид кальция соединяется с диоксидом кремния, образуя шлак - метасиликат кальция. Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности - это свойство позволяет разделять шлак от металла. Шлак затем может использоваться при строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме таких случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.
Излишки углерода и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используются и для выплавки легированных сталей.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.
Химически чистое железо получается электролизом растворов его солей.

Железо в чистом виде – это пластичный металл серого цвета, легко подвергаемый обработке. И всё же, для человека элемент Fe более практичен в сочетании с углеродом и другими примесями, которые позволяют образовывать металлические сплавы – стали и чугуны. 95% – именно столько всей производимой на планете металлической продукции содержит железо в качестве основного элемента.

Железо: история

Первые железные изделия, изготовленные человеком, датированы учёными IV тыс. до н. э., причем исследования показали, что для их производства использовалось метеоритное железо, для которого характерно 5-30-процентное содержание никеля. Интересно, но пока человечество не освоило добычу Fe путём его переплавки, железо ценилось дороже золота. Объяснялось это тем, что более крепкая и надежная сталь куда больше подходила для изготовления орудий труда и оружия, нежели медь и бронза.

Первый чугун научились получать древние римляне: их печи могли повышать температуру руды до 1400 о С, в то время как чугуну было достаточно 1100-1200 о С. Впоследствии они же получили и чистую сталь, температура плавления которой, как известно, составляет 1535 градуса по Цельсию.

Химические свойства Fe

С чем взаимодействует железо? Железо взаимодействует с кислородом, что сопровождается образованием оксидов; с водой в присутствии кислорода; с серной и соляной кислотами:

  • 3Fe+2O 2 = Fe 3 O 4
  • 4Fe+3O 2 +6H 2 O = 4Fe(OH) 3
  • Fe+H 2 SO 4 = FeSO 4 +H 2
  • Fe+2HCl = FeCl 2 +H 2

Также железо реагирует на щелочи, только если они представляют собой расплавы сильных окислителей. Железо не реагирует с окислителями при обычной температуре, однако всегда начинает вступать в реакцию при её повышении.

Применение железа в строительстве

Применение железа строительной отраслью в наши дни нельзя переоценить, ведь металлоконструкции являются основой абсолютно любого современного строения. В этой сфере Fe используется в составе обычных сталей, литейного чугуна и сварочного железа. Данный элемент находится везде, начиная с ответственных конструкций и заканчивая анкерными болтами и гвоздями.

Возведение строительных конструкций из стали обходится гораздо дешевле, к тому же здесь можно говорить и о более высоких темпах строительства. Это заметно увеличивает использование железа в строительстве, в то время как сама отрасль осваивает применение новых, более эффективных и надежных сплавов на основе Fe.

Использование железа в промышленности

Использование железа и его сплавов – чугуна и стали – это основа современного машино-, станко-, авиа-, приборостроения и изготовления прочей техники. Благодаря цианидам и оксидам Fe функционирует лакокрасочная промышленность, сульфаты железа применяются при водоподготовке. Тяжелая промышленность и вовсе немыслима без использования сплавов на основе Fe+C. Словом, Железо – это незаменимый, но вместе с тем доступный и относительно недорогой металл, который в составе сплавов имеет практически неограниченную сферу применения.

Применение железа в медицине

Известно, что в каждом взрослом человеке содержится до 4 грамм железа. Этот элемент крайне важен для функционирования организма, в частности, для здоровья кровеносной системы (гемоглобин в эритроцитах). Существует множество лекарственных препаратов на основе железа, которые позволяют повышать содержание Fe во избежание развития железодефицитной анемии.

Под процессами прямого получения железа понимают такие химические, электрохимические или химико-термические процессы, которые дают возможность получать непосредственно из руды, минуя , металлическое железо в виде губки, крицы или жидкого металла. Такие процессы ведутся, не расходуя металлургический кокс, флюсы, электроэнергию (на подготовку ), а также позволяют получить очень чистый металл.

Методы прямого получения железа известны давно. Опробовано более 70 различных способов, но лишь немногие осуществлены и притом в небольшом промышленном масштабе.

В последние годы интерес к этой проблеме вырос, что связано, помимо замены кокса другим топливом, с развитием способов глубокого обогащения руд, обеспечивающих не только высокого содержания железа в концентратах (70…72%), но и почти полное освобождение его от серы и фосфора.

Получение губчатого железа в шахтных печах

При получении губчатого железа добытую руду обогащают и получают окатыши. Окатыши из бункера 1 по грохоту 2 поступают в короб 10 шихтозавалочной машины и оттуда в шахтную печь 9 , работающую по принципу противотока. Просыпь от окатышей попадает в бункер 3 с брикетировочным прессом и в виде окатышей вновь поступает на грохот 2. Для восстановления железа из окатышей в печь по трубопроводу 8 подают смесь природного и доменного газов, подвергнутую в установке 7 конверсии, в результате которой смесь разлагается на водород H 2 и оксид углерода CO.

Установка для прямого восстановления железа из руд и получения металлизованных окатышей

В восстановительной зоне печи В создается температура 1000…1100 0 C, при которой H 2 и CO восстанавливают железную руду в окатышах до твёрдого губчатого железа. Содержание железа в окатышах достигает 90…95%. Для охлаждения железных окатышей по трубопроводу 6 в зону охлаждения 0 печи подают воздух. Охлаждённые окатыши 5 выдаются на 4 и поступают на .

Восстановление железа в кипящем слое

Мелкозернистую руду или концентрат помещают на решётку, через которую подают водород или другой восстановительный газ под давлением 1,5 МПа. Под давлением водорода частицы руды находятся во взвешенном состоянии, совершая непрерывное движение и образуя «кипящий», «псевдосжиженый» слой. В кипящем слое обеспечивается хороший контакт газа-восстановителя с частицами оксидов железа. На одну тонну восстановленного порошка расход водорода составляет 600…650 м 3 .

Получение губчатого железа в капсулах-тиглях

Используют карбидокремниевые капсулы диаметром 500 мм и высотой 1500 мм. Шихта загружается концентрическими слоями. Внутренняя часть капсулы заполнена восстановителем – измельченным твердым топливом и известняком (10…15%) для удаления серы. Второй слой – восстанавливаемая измельченная руда или концентрат, окалина, затем еще один концентрический слой – восстановителя и известняка. Установленные на вагонетки капсулы медленно перемещаются в туннельной печи длиной до 140 м, где происходит нагрев, выдержка при 1200 0 C и охлаждение в течение 100 часов.

Восстановленное железо получают в виде толстостенных труб, их чистят, дробят и измельчают, получая железный порошок с содержанием железа до 99 %, углерода – 0,1…0,2%.

Железо составляет более 5% земной коры. Для извлечения железа используются в основном такие руды, как гематит Fe2O3 и магнетит Fe3O4. В этих рудах содержится от 20 до 70% железа. Важнейшими примесями железа в этих рудах являются песок (оксид кремния(IV) SiO2) и глинозем (оксид алюминия Al2O3).

Получение железа из железной руды производится в две стадии. Оно начинается с подготовки руды-измельчения и нагревания. Руду измельчают на куски диаметром не более 10 см. Затем измельченную руду прокаливают для удаления воды и летучих примесей.

На второй стадии железную руду восстанавливают до железа с помощью оксида углерода в доменной печи (рисунок 2.1), где: 1 - железная руда, известняк, кокс, 2 загрузочный конус (колошник), 3 - колошниковый газ, 4- кладка печи, 5 - зона восстановления оксида железа, 6 - зона образования шлака, 7 - зона горения кокса, 8 - вдувание нагретого воздуха через фурмы, 9 - расплавленное железо, 10 - расплавленный шлак.

Восстановление проводится при температурах порядка 700°С:

Fe2O3(тв.) +3CO(г.) = 2Fe(ж.) + 3CO2(г.)

Для повышения выхода железа этот процесс проводится в условиях избытка диоксида углерода СO2.

Моноксид углерода СО образуется в доменной печи из кокса и воздуха (2.12). Воздух сначала нагревают приблизительно до 600 °С и нагнетают в печь через особую трубу - фурму. Кокс сгорает в горячем сжатом воздухе, образуя диоксид углерода. Эта реакция экзотермична и вызывает повышение температуры выше 1700 °С:

C(г.) + O2(г.) > CO2(г.) , ?H0m = -406 кДж/моль

Диоксид углерода поднимается вверх в печи и реагирует с новыми порциями кокса, образуя моноксид углерода (2.13). Эта реакция эндотермична:

CO2(г.) +С(тв.) > 2CO(г.) , ?H0m = +173 кДж/моль

Железо, образующееся при восстановлении руды, загрязнено примесями песка и глинозема. Для их удаления в печь добавляют известняк. При температурах, существующих в печи (800 0C), известняк подвергается термическому разложению с образованием оксида кальция и диоксида углерода:

СaCO3(тв.) >CaO(тв.) + CO2(г.)

Оксид кальция соединяется с примесями, образуя шлак. Шлак содержит силикат кальция и алюминат кальция:

CaO(тв.) + SiO2(тв.) >CaSiO3(ж.)

CaO(тв.) +Al2O3(тв.) >CaAl2O4(ж.)

Железо плавится при 1540°С. Расплавленное железо вместе с расплавленным шлаком стекают в нижнюю часть печи. Расплавленный шлак плавает на поверхности расплавленного железа. Периодически из печи выпускают на соответствующем уровне каждый из этих слоев.

Доменная печь работает круглосуточно, в непрерывном режиме. Сырьем для доменного процесса служат железная руда, кокс и известняк. Их постоянно загружают в печь через верхнюю часть. Железо выпускают из печи четыре раза в сутки, через равные промежутки времени. Оно выливается из печи огненным потоком при температуре порядка 1500 °С. Доменные печи бывают разной величины и производительности (1000-3000 т в сутки). В США существуют некоторые печи новой конструкции с четырьмя выпускными отверстиями и непрерывным выпуском расплавленного железа. Такие печи имеют производительность до 10000 т в сутки.

Железо, выплавленное в доменной печи, разливают в песочные изложницы. Такое железо называется чугун. Содержание железа в чугуне составляет около 95%. Чугун представляет собой твердое, но хрупкое вещество с температурой плавления около 1200 °С.

Литое железо получают, сплавляя смесь чугуна, металлолома и стали с коксом. Расплавленное железо разливают в формы и охлаждают.

Сварочное железо представляет собой наиболее чистую форму технического железа. Его получают, нагревая неочищенное железо с гематитом и известняком в плавильной печи. Это повышает чистоту железа приблизительно до 99,5%. Его температура плавления повышается до 1400 °С.

Сварочное железо имеет большую прочность, ковкость и тягучесть. Однако для многих применений его заменяют низкоуглеродистой сталью.

Производство стали: процесс переработки чугуна в сталь состоит в том, что из чугуна удаляется избыток углерода, серы, фосфора, кремния, марганца и других элементов. Удаление примесей осуществляется переведением их в оксиды, которые либо улетучиваются(CO и CO2), либо переходят в шлак. Переработка чугунов в сталь осуществляется тремя способами: бессемеровским, томасовским и мартеновским, которые выбирают в зависимости от состава чугуна и от сорта стали, которую нужно получить. Ниже подробно рассматриваются различные типы сталей, их свойства и применения.

Мартеновский способ отличается от последующих тем, что в нем используют твердые окислители в виде оксидов железа, содержащихся в руде, окалине и скрапе (металлоломе). Мартеновский процесс проводят в специальных печах, которые называются мартеновскими. Мартеновские печи (Рисунок 2.2), где: 1 -- свод, 2 -- завалочные окна, 3 -- ванна расплава, 4 -- головки, 5 -- регенераторы, 6 -- перекидные клапаны.

Мартеновские печи относятся к типу пламенных печей - они нагреваются пламенем, получаемым при сжигании горючих газов над поверхностью нагреваемой массы. В мартеновскую печь загружают чугун, руду и скрап в таком соотношении, чтобы кислорода оксидов железа было достаточно для окисления определенного количества примесей. Флюсы подбирают с таким расчетом, чтобы шлак был кислым или основным, в зависимости от характера выводимых примесей. Процесс плавки длится 5-6 часов. В течении этого времени периодически берут пробы расплавленной стали, определяют её состав и вносят необходимые компоненты в виде ферросплавов (сплавов железа с различными металлами и неметаллами, такими, как никель, марганец, титан, молибден, вольфрам, хром, кремний и другие). Большая длительность плавки позволяет изготовить сталь определенного состава. Применение воздуха, обогащенность кислородом, дает возможность достичь более высокой температуры и позволяет интенсифицировать процесс плавки и сократить её время до 4 часов.

Кислородно-конвертерный процесс. В последние десятилетия производство стали революционизировалось в результате разработки кислородно-конвертерного процесса (известного также под названием процесса Линца--Донавица). Этот процесс начал применяться в 1953 г. на сталеплавильных заводах в двух австрийских металлургических центрах - Линце и Донавице.

В кислородно-конвертерном процессе используется кислородный конвертер с основной футеровкой (кладкой) (рисунок 2.3), где: 1-кислород и CaO, 2 -- трубка с водяным охлаждением для кислородного дутья, 3 - шлак. 4-ось, 5-расплавленная сталь, 6 - стальной корпус.

Конвертер загружают в наклонном положении расплавленным чугуном из плавильной печи и металлоломом, затем возвращают в вертикальное положение. После этого в конвертер сверху вводят медную трубку с водяным охлаждением и через нее направляют на поверхность расплавленного железа струю кислорода с примесью порошкообразной извести СaO. Эта «кислородная продувка», которая длится 20 мин, приводит к интенсивному окислению примесей железа, причем содержимое конвертера сохраняет жидкое состояние благодаря выделению энергии при реакции окисления. Образующиеся оксиды соединяются с известью и превращаются в шлак. Затем медную трубку выдвигают и конвертер наклоняют, чтобы слить из него шлак. После повторной продувки расплавленную сталь выливают из конвертера (в наклонном положении) в ковш.

Кислородно-конвертерный процесс используется главным образом для получения углеродистых сталей. Он характеризуется большой производительностью. За 40-45 мин в одном конвертере может быть получено 300-350 т стали.

В настоящее время всю сталь в Великобритании и большую часть стали во всем мире получают с помощью этого процесса.

В зависимости от материала футеровки печи конверторный способ разделяют на два вида: бессемеровский и томасовский.

Бессемеровским способом перерабатывают чугуны, содержащие мало фосфора и серы и богатые кремнием (не менее 2%). При продувке кислорода сначала окисляется кремний с выделением значительного количества тепла. Вследствие этого начальная температура чугуна примерно с 1300°C быстро поднимается до 1500--1600°С. Выгорание 1% Si обусловливает повышение температуры на 200°C (2.17). Около 1500°C начинается интенсивное выгорание углерода. Вместе с ним интенсивно окисляется и железо, особенно к концу выгорания кремния и углерода:

Si(тв.) + O2(г.) = SiO2(тв.)

  • 2C(тв.) + O2(г.) = 2CO(г.)
  • 2Fe(тв.) + O2(г.) = 2FeO(тв.)

Образующийся монооксид железа, FeO, хорошо растворяется в расплавленном чугуне и частично переходит в сталь, а частично реагирует с SiO2 и в виде силиката железа FeSiO3 переходит в шлак:

FeO(тв.) + SiO2(тв.) = FeSiO3(тв.)

Фосфор полностью переходит из чугуна в сталь. Так P2O5 при избытке SiO2 не может реагировать с основными оксидами, поскольку SiO2 с последними реагирует более энергично. Поэтому фосфористые чугуны перерабатывать в сталь этим способом нельзя.

Все процессы в конверторе идут быстро -- в течение 10--20 минут, так как кислород воздуха, продуваемый через чугун, реагирует с соответствующими веществами сразу по всему объёму металла. При продувке воздухом, обогащенным кислородом, процессы ускоряются. Монооксид углерода CO, образующийся при выгорании углерода, пробулькивает вверх, сгорает там, образуя над горловиной конвертора факел светлого пламени, который по мере выгорания углерода уменьшается, а затем совсем исчезает, что и служит признаком окончания процесса. Получаемая при этом сталь содержит значительные количества растворенного монооксида железа FeO, который сильно снижает качество стали. Поэтому перед разливкой сталь надо обязательно раскислить с помощью различных раскислителей -- ферросилиция, фероманганца или алюминия:

2FeO(тв.) + Si(тв.) = 2Fe(тв.) + SiO2(тв.)

FeO(тв.) + Mn(тв.) = Fe(тв.) + MnO(тв.)

3FeO(тв.) + 2Al(тв.) = 3Fe(тв.) + Al2O3(тв.)

Монооксид марганца MnO как основной оксид реагирует с SiO2 и образует силикат марганца MnSiO3, который переходит в шлак. Оксид алюминия как нерастворимое при этих условиях вещество тоже всплывает наверх и переходит в шлак. Несмотря на простоту и высокую продуктивность, бессемеровский способ теперь не слишком распространен, поскольку он имеет ряд существенных недостатков. Так, чугун для бессемеровского способа должен быть с наименьшим содержанием фосфора и серы, что далеко не всегда возможно. При этом способе происходит очень большое выгорания металла, и выход стали составляет лишь 90% от массы чугуна, а также расходуется много раскислителей. Серьезным недостатком является невозможность регулирования химического состава стали.

Бессемеровская сталь содержит обычно менее 0,2% углерода и используется как техническое железо для производства проволоки, болтов, кровельного железа.

Томасовским способом перерабатывают чугун с большим содержанием фосфора (до 2 % и более). Основное отличие этого способа от бессемеровского заключается в том, что футеровку конвертера делают из оксидов магния и кальция. Кроме того, к чугуну добавляют ещё до 15 % CaO. Вследствие этого шлакообразующие вещества содержат значительный избыток оксидов с основными свойствами.

В этих условиях фосфатный ангидрид P2O5, который возникает при сгорании фосфора, взаимодействует с избытком CaO с образованием фосфата кальция и переходит в шлак:

4P(тв.) + 5O2(г.) = 2P2O5(тв.)

P2O5(тв.) + 3CaO(тв.) = Ca3(PO4)2(тв.)

Реакция горения фосфора является одним из главных источников тепла при этом способе. При сгорании 1 % фосфора температура конвертора поднимается на 150 °C. Сера выделяется в шлак в виде нерастворимого в расплавленной стали сульфида кальция CaS, который образуется в результате взаимодействия растворимого FeS с CaO по реакции:

FeS(ж.) + CaO(тв.) = FeO(ж.) + CaS(тв.)

Все последние процессы происходят так же, как и при бессемеровском способе. Недостатки Томасовского способа такие же, как и бессемеровского. Томасовская сталь также малоуглеродная и используется как техническое железо для производства проволоки, кровельного железа.

Электросталеплавильный процесс. Электрические печи используют главным образом для превращения стального и чугунного металлолома в высококачественные легированные стали, например в нержавеющую сталь. Электропечь представляет собой круглый глубокий резервуар, выложенный огнеупорным кирпичем. Через открытую крышку печь загружают металлоломом, затем крышку закрывают и через имеющиеся в ней отверстия опускают в печь электроды, пока они не придут в соприкосновение с металлоломом. После этого включают ток. Между электродами возникает дуга, в которой развивается температура выше 3000 0С. При такой температуре металл плавится и образуется новая сталь. Каждая загрузка печи позволяет получить 25--50 т стали.

Качество стальных изделий можно улучшить дополнительной обработкой. Для этого применяют термическую обработку, цементацию, азолирование, алитиование и различные антикоррозионные покрытия.

Таким образом, промышленный метод получения железа является основным и он намного эффективнее лабораторного. Существует много промышленных методов получения железа, в их основу положено получение железа в следствии выплавки чугунка из железных руд, виплавки из чугунка стали. промыленные методы добывания железа постоянно модернизируются и на смену одной методике приходит новая.


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав