30.09.2019

Методы применения алгоритма нахождения максимального потока в сети. Пример нахождения максимального потока методом Форда—Фалкерсона


Транспортная задача
Может возникать в физике, экономике и т.д.
На отдельные компоненты транспортной сети
(сеть железнодорожных, автомобильных и т.д.
путей; сеть трубопроводов и т.д.) наложены
ограничения – их максимально допустимая
нагрузка.
Необходимо определить максимально
возможное количество пассажиров, товара,
продукта и т.д., которое можно провезти по этой
сети и каким образом.
Мы построим графовую дискретную модель
этой транспортной задачи и решим ее в этой
модели.

Математик Джордж Бернард Данциг, с 1941 года
работая в отделе статистического управления Военновоздушных сил США в Вашингтоне, впервые решил
задачу о максимальном потоке в ходе подготовки
воздушного моста во время блокады Западного Берлина.
В 1951 году Джордж Данциг впервые сформулировал
задачу в общем виде. В 1955 году, Лестер Форд и
Делберт Фалкерсон впервые построили алгоритм,
специально предназначенный для решения этой задачи.
Их алгоритм получил название алгоритм ФордаФалкерсона.
В 2010 году исследователи Джонатан Кёлнер и
Александер Мондры из МТИ вместе со своими
коллегами Дэниелем Спилманом из Йельского
университета и Шень-Хуа Тенем из ЮжноКалифорнийского университета продемонстрировали
очередное улучшение алгоритма.

Дан ориентированный граф
(транспортная сеть) G=(V, E), вершина
графа s (источник) и вершина t (сток).
Каждой дуге (i, j) приписана некоторая
пропускная способность с(i,j) 0 (без
потери общности считаем её
целочисленной величиной),
определяющая максимальное значение
потока, который может протекать по
данной дуге.

Потоком
в
сети
называют
целочисленную функцию f(i, j), заданную
на множестве дуг E и обладающей
следующими свойствами:
1. Ограничение потока пропускной
способностью
Для любой дуги (i, j) E выполняется
неравенство f(i, j) c(i, j).

2. Сохранение потока
Для любой вершины q V,
выполняется равенство
q s
и
q t
f (i, q) f (q, j)
i V
(i , q) E
j V
(q , j) E
Т. е. сумма потока, заходящего в q, равна
сумме потока, выходящего из q (поток без
потерь и накоплений)

Требуется определить значение
максимального потока, который
можно пропустить от источника s к
стоку t, и его распределение по дугам.

Пример
У компании Lycky Puck в Ванкувере есть фабрика
(источник s), производящая хоккейные шайбы, а в
Виннипеге – склад (сток t), где эти шайбы хранятся.
Компания арендует места на грузовиках других фирм
для доставки шайб с фабрики на склад. Поскольку
грузовики ездят по определенным маршрутам (ребрам)
между городами (вершинами) и имеют ограниченную
грузоподъемность, компания Lycky Puck может
перевозить не более c(u,v) ящиков в день между каждой
парой городов u и v. Компания Lycky Puck не может
повлиять на маршруты и пропускную способность. Ее
задача – определить, какое наибольшее количество
ящиков в день можно отгружать, и затем производить
именно такое количество, поскольку не имеет смысла
производить шайб больше, чем можно отправить на
склад.

Методы решения задачи
Линейное программирование
Представить задачу о максимальном потоке как задачу
линейного программирования. Переменными являются
потоки по рёбрам, а ограничениями - сохранение потока
и ограничение пропускной способности.
Алгоритм Форда-Фалкерсона
Найти любой увеличивающий путь. Увеличить поток по
всем его рёбрам на минимальную из их остаточных
пропускных способностей. Повторять, пока
увеличивающий путь есть. Алгоритм работает только
для целых пропускных способностей.

10.

Пример 1
Дадим формулировку задачи о максимальном
потоке в терминах линейного программирования.
Пусть ХKM - объем перевозок из пункта К в пункт М.
К = 0,1,2,3, М = 1,2,3,4, причем перевозки возможны
лишь в пункт с большим номером. Значит, всего
имеется 9 переменных ХKM, а именно, Х01 , Х02 , Х03 , Х12
, Х13 , Х14 , Х23 , Х24 , Х34 .
s=0
t=4

11.

Задача линейного программирования,
нацеленная на максимизацию потока, имеет вид:
F → max ,
Х01 +Х02 +Х03 =F
-Х01 +Х12 +Х13 +Х14 = 0
-Х02 -Х12 +Х23 +Х24 = 0
-Х03 -Х13 -Х23 +Х34 = 0
-Х14 -Х24 -Х34 = - F
Х01 ≤ 2
Х02 ≤ 3
Х03 ≤ 1
Х12 ≤ 4
Х13 ≤ 1
Х14 ≤ 3
Х23 ≤ 1
Х24 ≤ 2
Х34 ≤ 2
ХКМ ≥ 0 , К, М = 0, 1, 2, 3, 4
F≥0.

12.

Разрезом
называют множество дуг,
удаление которых из сети приводит к
«разрыву» всех путей, ведущих из s в t.
Пропускная способность разреза – это
суммарная пропускная способность дуг, его
составляющих.
!!! Найти разрезы в примере 1

13.

Теорема Л. Форда и Д. Фалкерсона:
Величина каждого потока из s в t не
превосходит
пропускной
способности
минимального разреза, разделяющего s и t,
причем поток, достигающий этого значения,
существует.
(Величина
максимального
потока
в
транспортной
сети
равна
величине
минимального разреза в ней)
!!! Найти минимальный разрез в примере 1

14.

С алгоритмической точки зрения эта
теорема малопродуктивна.
Генерация всех подмножеств дуг и
проверка,
является
ли
очередное
подмножество разрезом – «лобовое решение»,
приводит к высокой сложности алгоритма.
Кроме того, данный факт не помогает
найти способ распределения максимального
потока по дугам.

15.

Алгоритм Форда-Фалкерсона
«Техника меток» Л. Форда и Д. Фалкерсона
заключается в последовательном
(итерационном, поиском в ширину) построении
максимального потока путем поиска на каждом
шаге увеличивающей цепи, то есть пути, по
которому можно увеличить поток.
При этом узлы (вершины графа)
специальным образом помечаются. Отсюда и
возник термин «метка».

16.

Алгоритм Форда-Фалкерсона
Что представляет из себя метка
вершины?
первая цифра в метке – это номер
вершины, из которой идет поток в
данную вершину;
вторая цифра в метке – численное
значение потока, который можно
передать в данную вершину.

17.

Алгоритм Форда-Фалкерсона
На каждом шаге алгоритма вершины сети
могут находиться в одном из трех состояний:
вершина не имеет метки;
вершине присвоена метка, и она не
просмотрена, т. е. не все смежные с ней
вершины обработаны;
вершине присвоена метка, и она
просмотрена.

18.

Алгоритм Форда-Фалкерсона
Как только вершина-сток становится
помеченной, это говорит о том, что
очередная увеличивающая поток цепочка
найдена, итоговый суммарный поток
необходимо увеличить на величину потока
найденной цепочки, и перейти к
следующему шагу алгоритма.

19.

Алгоритм Форда-Фалкерсона
Дуга e=(u, v) сети является допустимой
дугой из u в v относительно потока f, если
e=(u, v) и f(e) прямые);
e=(v, u) и f(e)>0 (дуги второго типа,
обратные).
Второе условие говорит о том, что
допустимыми являются и дуги, входящие в
вершину u, по которым «уже пропущен
ненулевой поток».

Решить задачу нахождения максимального потока в транспортной сети с помощью алгоритма Форда-Фалкерсона, и построить разрез сети S.
Исходные данные:
Дана сеть S(X,U)
- исток сети; - сток сети, где ∈X; ∈X.
Значения пропускных способностей дуг заданы по направлению ориентации дуг: от индекса i к индексу j.

r = 39; r = 44; r = 33; r = 53; r = 10;
r = 18; r = 95; r = 16; r = 23; r = 61;
r = 81; r = 71; r = 25; r = 15; r = 20

1. Зададим на сети нулевой поток (на всех дугах величина потока равна 0). Нулевой поток - это начальный допустимый поток на сети. Значение потока на каждой дуге будем указывать за скобками пропускной способности дуги.). Значение потока, равное «0», не указываем.
2. Выбираем на сети (произвольно) путь, ведущий из вершины x0 в вершину x7:
X0-X1-X4-X6-X7
3. Находим и увеличиваем поток на эту величину. Ребро Х1-Х4 помечаем как рассмотренное.


4. Выбираем еще один путь, например: Х0-Х2-Х5-Х7, находим и увеличиваем поток на эту величину. Ребро Х0-Х2 помечаем как рассмотренное.


5. Выбираем еще один путь, например: Х0-Х3-Х2-Х5-Х7, находим и увеличиваем поток на эту величину. Ребро Х3-Х2 помечаем как рассмотренное.


6. Более путей от Х0 до Х7 нет, суммируем увеличения потока: 25+10+20=55.
Вывод: максимальный поток равен 55.

2) Построить разрез сети S.
Процедура «пометок вершин».
Начальное состояние: все вершины не имеют пометок.
Вершине Х0 приписывается пометка. Всем вершинам , для которых дуга не насыщена присваиваются пометки (красные круги)


Определяем дуги минимального разреза: это дуги, начала которых находятся в помеченных вершинах, а концы - в непомеченных вершинах.
Это дуги:
Таким образом, минимальный разрез данной сети
Вычисление величины максимального потока

Идея этого алгоритма состоит в поиске сквозных путей с положительными потоками от источника к стоку.

Рассмотрим ребро (i, j) с (начальной) пропускной способностью. В процессе выполнения алгоритма части этих пропускных способностей «забираются» потоками, проходящими через данное ребро, в результате каждое ребро будет иметь остаточную пропускную способность. Запись - остаточная пропускная способность. Сеть в которой все ребра имеют остаточную пропускную способность, назовем остаточной.

Для произвольного узла j, получающего поток из узла i, определим метку, где - величина потока, протекающего от j узла к узлу i. Чтобы найти максимальный поток, выполняем следующие действия.

Для всех ребер положим остаточную пропускную способность равной первоначальной пропускной способности, т.е. приравняем =. Назначим и пометим узел 1 меткой. Полагаем i=1.

Множество узлов j, в которые можно перейти из узла I по ребру с положительной остаточной пропускной способностью >0 для всех j. Если, выполняем 3 этап, в противном случае переходим к 4.

В находим узел k, такой, что. Положим и пометим узел k меткой. Если k=n, сквозной путь найден, и переходим к 5 этапу, в противном случае полагаем i=k и возвращаемся к 2 этапу.

Откат назад. Если i=1, сквозной путь не возможен, и переходим к 6. Если, находим помеченный узел r, непосредственно предшествующий узлу i, и удаляем его из множества узлов, смежных с узлом r. Полагаем i=r и возвращаемся ко 2 этапу.

Определение остаточной сети. Обозначим через множество узлов, через которые проходит p_й найденный сквозной путь от узла источника (узел 1) до узла стока (узел n).тогда максимальный поток, проходящий по этому пути

Остаточные пропускные способности ребер, составляющих сквозной путь, уменьшаются на величину в направлении движения потока и увеличиваются на эту же величину в противоположном направлении.

Т.о. для ребра (i, j), входящего в сквозной путь, текущие остаточные пропускные способности изменяются:

1) , если поток идет от узла i к j,

2) , если поток идет от узла j к i.

а) при m найденных сквозных путях максимальный поток выражается

б) Имея значения начальных и конечных пропускных способностей ребра (i, j), можно вычислить оптимальный поток через это ребро следующим образом. Положим. Если >0, поток, проходящий через ребро (i, j) равен. Если >0, тогда поток равен. (случай, когда одновременно >0 и >0, невозможен).

Пример 1. Найти максимальный поток в сети рис. 1

Итерация 1. =

3) k=3, так как. Назначаем и помечаем узел 3 меткой. i=3 и возвращаемся к 2)

5) k=5 и. Помечаем узел 5 меткой. Получаем сквозной путь.

6) сквозной путь определяем по меткам, начиная с узла 5 и заканчивая узлом 1: . и. Вычисляем остаточные пропускные способности вдоль пути:

Итерация 2.

1) и помечаем узел 1 меткой. i=1

2») (, поэтому узел 5 не включается в

3») k=4, и помечаем узел 4 меткой. i=4 и возвращаемся к 2)

2""") (так как узлы 1 и 3 помечены, они не включаются в)

3""") k=5 и. Помечаем узел 5 меткой. Получен сквозной путь. Переходим к 5)

Итерация 3.

1) и помечаем узел 1 меткой. i=1

3) k=2, и помечаем узел 2 меткой. i=2 и возвращаемся к 2)

3") k=3 и. Помечаем узел 3 меткой. i=3 и возвращаемся к 2)

2») (так как) переходим к 4)

4) метка узла 3 показывает номер предшествующего узла. На этой итерации узел 3 в дальнейшем во внимание не принимается, его метку вычеркиваем. и возвращаемся к 2)

2""") (так как узел 3 удален из возможного сквозного пути)

3""") и. Помечаем узел 5 меткой. Получен сквозной путь. Переходим к 5)

5) и. Вычисляем остаточные пропускные способности вдоль пути:

Итерация 4. на этой итерации получен путь с

Итерация 5. на этой итерации получен путь с

Итерация 6. новые сквозные пути невозможны, поскольку все ребра, исходящие из узла 1, имеют нулевые остаточные пропускные способности. Переходим к 6) для определения решения

6) максимальный объем потока в сети равен единиц.

Значения потоков по различным ребрам вычисляются путем вычитания последних значений остаточных пропускных способностей из первоначальных значений пропускных способностей.

Результаты вычислений: табл. 1

Величина потока

направление

(20,0) - (0,20)=(20, - 20)

(30,0) - (0,30)=(30, - 30)

(10,0) - (0,10)=(10, - 10)

(40,0) - (40,0)=(0,0)

(30,0) - (10,20)=(20, - 20)

(10,5) - (0,15)=(10, - 10)

(20,0) - (0,20)=(20, - 20)

(20,0) - (0,20)=(20, - 20)

Графическое последовательное выполнение алгоритма нахождения максимального потока (пример 1)







д) е) Сквозных путей нет


Рис.

Исходные данные о транспортной системе, например, внутризаводской, приведенные на рис. 2, можно также задать таблицей (табл. 2).

Табл.2. Исходные данные к задаче о максимальном потоке

Очевидно, максимальная пропускная способность транспортной системы не превышает 6, поскольку не более 6 единиц грузов можно направить из начального пункта 0, а именно, 2 единицы в пункт 1, 3 единицы в пункт 2 и 1 единицу в пункт 3. Далее надо добиться, чтобы все 6 вышедших из пункта 0 единиц груза достигли конечного пункта 4. Очевидно, 2 единицы груза, пришедшие в пункт 1, можно непосредственно направить в пункт 4. Пришедшие в пункт 2 грузы придется разделить: 2 единицы сразу направить в пункт 4, а 1 единицу - в промежуточный пункт 3 (из-за ограниченной пропускной способности участка между пунктами 2 и 4). В пункт 3 доставлены такие грузы: 1 единица из пункта 0 и 1 единица из пункта 3. Их направляем в пункт 4. Итак, максимальная пропускная способность рассматриваемой транспортной системы - 6 единиц груза. При этом не используются внутренние участки (ветки) между пунктами 1 и 2, а также между пунктами 1 и 3. Не догружена ветка между пунктами 1 и 4 - по ней направлены 2 единицы груза при пропускной способности в 3 единицы. Решение можно представить в виде таблицы (табл. 3)

Табл.3. Решение задачи о максимальном потоке

Пункт отправления

Пункт назначения

План перевозок

Пропускная способность

Задача линейного программирования при максимизации потока. Дадим формулировку задачи о максимальном потоке в терминах линейного программирования. Пусть Х KM - объем перевозок из пункта К в пункт М. Согласно рис. 2 К = 0,1,2,3, М = 1,2,3,4, причем перевозки возможны лишь в пункт с большим номером. Значит, всего имеется 9 переменных Х KM, а именно, Х 01, Х 02, Х 03, Х 12, Х 13, Х 14, Х 23, Х 24, Х 34. Задача линейного программирования, нацеленная на максимизацию потока, имеет вид:

Х 01 + Х 02 + Х 03 = F (0)

Х 01 + Х 12 + Х 13 + Х 14 = 0 (1)

Х 02 - Х 12 + Х 23 + Х 24 = 0 (2)

Х 03 - Х 13 - Х 23 + Х 34 = 0 (3)

Х 14 - Х 24 - Х 34 = - F (4)

Х КМ? 0, К, М = 0, 1, 2, 3, 4

Здесь F - целевая функция, условие (0) описывает вхождение грузов в транспортную систему. Условия (1) - (3) задают балансовые соотношения для узлов 1- 3 системы. Другими словами, для каждого из внутренних узлов входящий поток грузов равен выходящему потоку, грузы не скапливаются внутри и системы и не «рождаются» в ней. Условие (4) - это условие «выхода» грузов из системы. Вместе с условием (0) оно составляет балансовое соотношение для системы в целом («вход» равен «выходу»). Следующие девять неравенств задают ограничения на пропускную способность отдельных «веток» транспортной системы. Затем указана неотрицательность объемов перевозок и целевой функции. Ясно, что последнее неравенство вытекает из вида целевой функции (соотношения (0) или (4)) и неотрицательности объемов перевозок. Однако последнее неравенство несет некоторую общую информацию - через систему может быть пропущен либо положительный объем грузов, либо нулевой (например, если внутри системы происходит движение по кругу), но не отрицательный (он не имеет экономического смысла, но формальная математическая модель об этом «не знает»).

Сумма потоков через дуги, инцидентные v , равна сумме потоков через дуги, инцидентные w ; эта сумма называется величиной потока. Будем в первую очередь интересоваться потоками, имеющими наибольшую возможную величину, - так называемыми максимальными потоками. В общем случае сеть может иметь несколько различных максимальных потоков, однако их величины должны совпадать. (4)

Изучение максимальных потоков через сеть N = (V,D,a) тесно связано с понятием разреза, т.е. такого множества A дуг орграфа D, которое обладает тем свойством, что любая простая цепь из v в проходит через дугу, принадлежащую A. Пропускной способностью разреза называется сумма пропускных способностей принадлежащих ему дуг. Разрезы, обладающие наименьшей возможной пропускной способностью, называются минимальными разрезами.

Величина любого потока не превышает пропускной способности любого разреза, и, следовательно, величина любого максимального потока не превышает пропускной способности любого минимального разреза. Однако сразу не ясно, что два последних числа всегда равны между собой; Этот результат был получен американскими математиками Фордом и Фалкерсоном в 1955 году и назван теоремой о максимальном потоке и минимальном разрезе.

Теорема (о максимальном потоке и минимальном разрезе) . Во всякой сети величина любого максимального потока равна пропускной способности любого минимального разреза.

Теорема о максимальном потоке и минимальном разрезе позволяет проверять, максимален данный поток или нет, но только для достаточно простых сетей. Разумеется, на практике приходится иметь дело с большими и сложными сетями, и в общем случае трудно найти максимальный поток простым подбором. Опишем один алгоритм нахождения максимального потока в любой сети с целочисленными пропускными способностями.

Шаг 1 . Сначала подберем поток, обладающий ненулевой величиной (если такой поток существует). Например, если N – сеть, представленная на рис. 29.3, то подходящим будет поток, изображенный на рис. 29.4. Стоит отметить, что чем больше величина выбранного нами начального потока , тем проще будут последующие шаги.

Шаг 2 . Исходя из N, строим новую сеть N’ путем изменения направления потока на противоположное. Более точно, любая дуга a, для которой(a) = 0, остается в N’ со своей первоначальной пропускной способностью, а любая дуга a, для которой , заменяется дугой a с пропускной способностью и противоположно направленной дугой с пропускной способностью (a). Сеть N’ в нашем примере показана на рис. 29.5. Вершина v уже не является источником,а – стоком.

Шаг 3 . Если в сети N’ мы сможем найти ненулевой поток из v в, то его можно добавить к первоначальному потокуи получить в N новый поток’большей величины. Теперь можно повторить шаг 2, используя при построении сети N’ новый поток’ вместо. Повторяя эту процедуру, мы в конце концов придем к сети N’ , не содержащей ненулевых потоков; тогда соответствующий потокбудет максимальным потоком. Например, на рис. 29.5 существует ненулевой поток, в котором потоки через дуги (v,u ), (u,z ), (z,x ), (x,y ) и (y, ) равны единице, а потоки через остальные дуги равны нулю. Добавляя этот поток к потоку на рис. 29.4, получим поток, изображенный на рис. 29.6; повторяя шаг 2, легко показать, что это и есть максимальный поток.


Используемая литература:

(1) http://pgap.chat.ru/zap/zap264.htm#0

(2) Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы матроиды, алгоритмы

(3) Басакер Р., Саати Т. Конечные графы и сети.

(4) Уилсон Р. Введение в теорию графов


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав