26.09.2019

Графическое решение показательных неравенств примеры. Решение показательных неравенств: основные способы


белгородский государственный университет

КАФЕДРА алгебры, теории чисел и геометрии

Тема работы: Показательно-степенные уравнения и неравенства.

Дипломная работа студента физико-математического факультета

Научный руководитель:

______________________________

Рецензент: _______________________________

________________________

Белгород. 2006 г.


Введение 3
Тема I. Анализ литературы по теме исследования.
Тема II. Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств.
I.1. Степенная функция и ее свойства.
I.2. Показательная функция и ее свойства.
Тема III. Решение показательно-степенных уравнений, алгоритм и примеры.
Тема IV. Решение показательно-степенных неравенств, план решения и примеры.
Тема V. Опыт проведения занятий со школьниками по теме: «Решение показательно-степенных уравнений и неравенств».
V. 1. Обучающий материал.
V. 2. Задачи для самостоятельного решения.
Заключение. Выводы и предложения.
Список используемой литературы.
Приложения

Введение.

«…радость видеть и понимать…»

А.Эйнштейн.

В этой работе я попыталась передать свой опыт работы учителем математики, передать хоть в какой-то степени свое отношение к ее преподаванию - человеческому делу, в котором удивительным образом переплетаются и математическая наука, и педагогика, и дидактика, и психология, и даже философия.

Мне довелось работать с малышами и выпускниками, с детьми, стоящими на полюсах интеллектуального развития: теми, кто со­стоял на учете у психиатра и кто действительно интересовался математикой

Мне довелось решать множество методических задач. Я попы­таюсь рассказать о тех из них, которые мне удалось решить. Но еще больше - не удалось, да и в тех, что вроде бы решены, появ­ляются новые вопросы.

Но еще важнее самого опыта - учительские размышления и сомнения: а почему он именно такой, этот опыт?

И лето нынче на дворе иное, и разворот образования стал поинтереснее. «Под юпи­терами» нынче не поиски мифической оптимальной системы обучения «всех и всему», а сам ребенок. Но тогда - с необходи­мостью - и учитель.

В школьном курсе алгебры и начал анализа, 10 – 11 класс, при сдаче ЕГЭ за курс средней школы и на вступительных экзаменах в ВУЗы встречаются уравнения и неравенства, содержащее неизвестное в основании и показатели степени – это показательно-степенные уравнения и неравенства.

В школе им мало уделяется внимания, в учебниках практически нет заданий на эту тему. Однако, овладение методикой их решения, мне кажется, очень полезным: оно повышает умственные и творческие способности учащихся, перед нами открываются совершенно новые горизонты. При решении задач ученики приобретают первые навыки исследовательской работы, обогащается их математическая культура, развиваются способности к логическому мышлению. У школьников формируются такие качества личности как целеустремленность, целеполагание, самостоятельность, которые будут полезны им в дальнейшей жизни. А также происходит повторение, расширение и глубокое усвоение учебного материала.

Работать над данной темой дипломного исследования я начала еще с написания курсовой. В ходе, которой я глубже изучила и проанализировала математическую литературу по этой теме, выявила наиболее подходящий метод решения показательно-степенных уравнений и неравенств.

Он заключается в том, что помимо общепринятого подхода при решении показательно-степенных уравнений (основание берется больше 0) и при решении тех же неравенств (основание берется больше 1 или больше 0, но меньше 1), рассматриваются еще и случаи, когда основания отрицательны, равны 0 и 1.

Анализ письменных экзаменационных работ учащихся показывает, что неосвещенность вопроса об отрицательном значении аргумента показательно-степенной функции в школьных учебниках, вызывает у них ряд трудностей и ведет к появлению ошибок. А также у них возникают проблемы на этапе систематизации полученных результатов, где могут в силу перехода к уравнению – следствию или неравенству – следствию, появиться посторонние корни. С целью устранения ошибок мы используем проверку по исходному уравнению или неравенству и алгоритм решения показательно-степенных уравнений, либо план решения показательно-степенных неравенств.

Чтобы учащиеся смогли успешно сдать выпускные и вступительные экзамены, я считаю, необходимо уделять больше внимания решению показательно-степенных уравнений и неравенств на учебных занятиях, либо дополнительно на факультативах и кружках.

Таким образом тема , моей дипломной работы определена следующим образом: «Показательно-степенные уравнения и неравенства».

Целями настоящей работы являются:

1. Проанализировать литературу по данной теме.

2. Дать полный анализ решения показательно-степенных уравнений и неравенств.

3. Привести достаточное число примеров по данной теме разнообразных типов.

4. Проверить на урочных, факультативных и кружковых занятиях как будет восприниматься предлагаемые приемы решения показательно-степенных уравнений и неравенств. Дать соответствующие рекомендации к изучению этой темы.

Предметом нашего исследования является разработка методики решения показательно-степенных уравнений и неравенств.

Цель и предмет исследования потребовали решения следующих задач:

1. Изучить литературу по теме: «Показательно-степенные уравнения и неравенства».

2. Овладеть методиками решения показательно-степенных уравнений и неравенств.

3. Подобрать обучающий материал и разработать систему упражнений разных уровней по теме: «Решение показательно-степенных уравнений и неравенств».

В ходе дипломного исследования было проанализировано более 20 работ, посвященных применению различных методов решения показательно-степенных уравнений и неравенств. Отсюда получаем.

План дипломной работы:

Введение.

Глава I. Анализ литературы по теме исследования.

Глава II. Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств.

II.1. Степенная функция и ее свойства.

II.2. Показательная функция и ее свойства.

Глава III. Решение показательно-степенных уравнений, алгоритм и примеры.

Глава IV. Решение показательно-степенных неравенств, план решения и примеры.

Глава V. Опыт проведения занятий со школьниками по данной теме.

1.Обучающий материал.

2.Задачи для самостоятельного решения.

Заключение. Выводы и предложения.

Список использованной литературы.

В I главе проанализирована литература

Урок и презентация на тему: "Показательные уравнения и показательные неравенства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Определение показательных уравнений

Ребята, мы изучили показательные функций, узнали их свойства и построили графики, разобрали примеры уравнений, в которых встречались показательные функции. Сегодня мы будем изучать показательные уравнения и неравенства.

Определение. Уравнения вида: $a^{f(x)}=a^{g(x)}$, где $a>0$, $a≠1$ называются показательными уравнениями.

Вспомнив теоремы, которые мы изучали в теме "Показательная функция", можно ввести новую теорему:
Теорема. Показательное уравнение $a^{f(x)}=a^{g(x)}$, где $a>0$, $a≠1$ равносильно уравнению $f(x)=g(x)$.

Примеры показательных уравнений

Пример.
Решить уравнения:
а) $3^{3x-3}=27$.
б) ${(\frac{2}{3})}^{2x+0,2}=\sqrt{\frac{2}{3}}$.
в) $5^{x^2-6x}=5^{-3x+18}$.
Решение.
а) Мы хорошо знаем, что $27=3^3$.
Перепишем наше уравнение: $3^{3x-3}=3^3$.
Воспользовавшись теоремой выше, получаем, что наше уравнение сводится к уравнению $3х-3=3$, решив это уравнение, получим $х=2$.
Ответ: $х=2$.

Б) $\sqrt{\frac{2}{3}}={(\frac{2}{3})}^{\frac{1}{5}}$.
Тогда наше уравнение можно переписать: ${(\frac{2}{3})}^{2x+0,2}={(\frac{2}{3})}^{\frac{1}{5}}={(\frac{2}{3})}^{0,2}$.
$2х+0,2=0,2$.
$х=0$.
Ответ: $х=0$.

В) Исходное уравнение равносильно уравнению: $x^2-6x=-3x+18$.
$x^2-3x-18=0$.
$(x-6)(x+3)=0$.
$x_1=6$ и $x_2=-3$.
Ответ: $x_1=6$ и $x_2=-3$.

Пример.
Решить уравнение: $\frac{{(0,25)}^{x-0,5}}{\sqrt{4}}=16*{(0,0625)}^{x+1}$.
Решение:
Последовательно выполним ряд действий и приведем обе части нашего уравнения к одинаковым основаниям.
Выполним ряд операций в левой части:
1) ${(0,25)}^{x-0,5}={(\frac{1}{4})}^{x-0,5}$.
2) $\sqrt{4}=4^{\frac{1}{2}}$.
3) $\frac{{(0,25)}^{x-0,5}}{\sqrt{4}}=\frac{{(\frac{1}{4})}^{x-0,5}}{4^{\frac{1}{2}}}= \frac{1}{4^{x-0,5+0,5}}=\frac{1}{4^x}={(\frac{1}{4})}^x$.
Перейдем к правой части:
4) $16=4^2$.
5) ${(0,0625)}^{x+1}=\frac{1}{{16}^{x+1}}=\frac{1}{4^{2x+2}}$.
6) $16*{(0,0625)}^{x+1}=\frac{4^2}{4^{2x+2}}=4^{2-2x-2}=4^{-2x}=\frac{1}{4^{2x}}={(\frac{1}{4})}^{2x}$.
Исходное уравнение равносильно уравнению:
${(\frac{1}{4})}^x={(\frac{1}{4})}^{2x}$.
$x=2x$.
$x=0$.
Ответ: $х=0$.

Пример.
Решить уравнение: $9^x+3^{x+2}-36=0$.
Решение:
Перепишем наше уравнение: ${(3^2)}^x+9*3^x-36=0$.
${(3^x)}^2+9*3^x-36=0$.
Давайте сделаем замену переменных, пусть $a=3^x$.
В новых переменных уравнение примет вид: $a^2+9a-36=0$.
$(a+12)(a-3)=0$.
$a_1=-12$ и $a_2=3$.
Выполним обратную замену переменных: $3^x=-12$ и $3^x=3$.
На прошлом уроке мы узнали, что показательные выражения могут принимать только положительные значения, вспомните график. Значит, первое уравнение не имеет решений, второе уравнение имеет одно решение: $х=1$.
Ответ: $х=1$.

Давайте составим памятку способов решения показательных уравнений:
1. Графический метод. Представляем обе части уравнения в виде функций и строим их графики, находим точки пересечений графиков. (Этим методом мы пользовались на прошлом уроке).
2. Принцип равенства показателей. Принцип основан на том, что два выражения с одинаковыми основаниями равны, тогда и только тогда, когда равны степени (показатели) этих оснований. $a^{f(x)}=a^{g(x)}$ $f(x)=g(x)$.
3. Метод замены переменных. Данный метод стоит применять, если уравнение при замене переменных упрощает свой вид и его гораздо легче решить.

Пример.
Решить систему уравнений: $\begin {cases} {27}^y*3^x=1, \\ 4^{x+y}-2^{x+y}=12. \end {cases}$.
Решение.
Рассмотрим оба уравнения системы по отдельности:
$27^y*3^x=1$.
$3^{3y}*3^x=3^0$.
$3^{3y+x}=3^0$.
$x+3y=0$.
Рассмотрим второе уравнение:
$4^{x+y}-2^{x+y}=12$.
$2^{2(x+y)}-2^{x+y}=12$.
Воспользуемся методом замены переменных, пусть $y=2^{x+y}$.
Тогда уравнение примет вид:
$y^2-y-12=0$.
$(y-4)(y+3)=0$.
$y_1=4$ и $y_2=-3$.
Перейдем к начальным переменным, из первого уравнения получаем $x+y=2$. Второе уравнение не имеет решений. Тогда наша начальная система уравнений, равносильна системе: $\begin {cases} x+3y=0, \\ x+y=2. \end {cases}$.
Вычтем из первого уравнения второе, получим: $\begin {cases} 2y=-2, \\ x+y=2. \end {cases}$.
$\begin {cases} y=-1, \\ x=3. \end {cases}$.
Ответ: $(3;-1)$.

Показательные неравенства

Перейдем к неравенствам. При решении неравенств необходимо обращать внимание на основание степени. Возможны два варианта развития событий при решении неравенств.

Теорема. Если $а>1$, то показательное неравенство $a^{f(x)}>a^{g(x)}$ равносильно неравенству $f(x)>g(x)$.
Если $0a^{g(x)}$ равносильно неравенству $f(x)

Пример.
Решить неравенства:
а) $3^{2x+3}>81$.
б) ${(\frac{1}{4})}^{2x-4} в) ${0,3}^{x^2+6x}≤{0,3}^{4x+15}$.
Решение.
а) $3^{2x+3}>81$.
$3^{2x+3}>3^4$.
Наше неравенство равносильно неравенству:
$2x+3>4$.
$2x>1$.
$x>0,5$.

Б) ${(\frac{1}{4})}^{2x-4} ${(\frac{1}{4})}^{2x-4} В нашем уравнении основание при степени меньше 1, тогда при замене неравенства на эквивалентное необходимо поменять знак.
$2x-4>2$.
$x>3$.

В) Наше неравенство эквивалентно неравенству:
$x^2+6x≥4x+15$.
$x^2+2x-15≥0$.
$(x-3)(x+5)≥0$.
Воспользуемся интервальным методом решения:
Ответ: $(-∞;-5]U}


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав