30.09.2019

Составить уравнение прямой онлайн с решением. Общее уравнение прямой. Частные случаи общего уравнения прямой


Общее уравнение прямой:

Частные случаи общего уравнения прямой:

а) Если C = 0, уравнение (2) будет иметь вид

Ax + By = 0,

и прямая, определяемая этим уравнением, проходит через начало координат, так как координаты начала координат x = 0, y = 0 удовлетворяют этому уравнению.

б) Если в общем уравнении прямой (2) B = 0, то уравнение примет вид

Ax + С = 0, или .

Уравнение не содержит переменной y , а определяемая этим уравнением прямая параллельна оси Oy .

в) Если в общем уравнении прямой (2) A = 0, то это уравнение примет вид

By + С = 0, или ;

уравнение не содержит переменной x , а определяемая им прямая параллельна оси Ox .

Следует запомнить: если прямая параллельна какой-нибудь координатной оси, то в ее уравнении отсутствует член, содержащий координату, одноименную с этой осью.

г) При C = 0 и A = 0 уравнение (2) принимает вид By = 0, или y = 0.

Это уравнение оси Ox .

д) При C = 0 и B = 0 уравнение (2) запишется в виде Ax = 0 или x = 0.

Это уравнение оси Oy .

Взаимное расположение прямых на плоскости. Угол между прямыми на плоскости. Условие параллельности прямых. Условие перпендикулярности прямых.

l 1 l 2 l 1: A 1 x + B 1 y + C 1 = 0
l 2: A 2 x + B 2 y + C 2 = 0

S 2 S 1 Вектора S 1 и S 2 называются направляющими для своих прямых.

Угол между прямыми l 1 и l 2 определяется углом между направляющими векторами.
Теорема 1: cos угла между l 1 и l 2 = cos(l 1 ; l 2) =

Теорема 2: Для того, чтобы 2 прямые были равны необходимо и достаточно:

Теорема 3: чтобы 2 прямые были перпендикулярны необходимо и достаточно:

L 1 l 2 ó A 1 A 2 + B 1 B 2 = 0


Общее уравнение плоскости и его частные случаи. Уравнение плоскости в отрезках.

Общее уравнение плоскости:

Ax + By + Cz + D = 0

Частные случаи:

1. D=0 Ax+By+Cz = 0 – плоскость проходит через начало координат

2. С=0 Ax+By+D = 0 – плоскость || OZ

3. В=0 Ax+Cz+d = 0 – плоскость || OY

4. A=0 By+Cz+D = 0 – плоскость || OX

5. A=0 и D=0 By+Cz = 0 – плоскость проходит через OX

6. В=0 и D=0 Ax+Cz = 0 – плоскость проходит через OY

7. C=0 и D=0 Ax+By = 0 – плоскость проходит через OZ

Взаимное расположение плоскостей и прямых линий в пространстве:

1. Углом между прямыми в пространстве называется угол между их направляющими векторами.

Cos (l 1 ; l 2) = cos(S 1 ; S 2) = =

2. Углом между плоскостями определяется через угол между их нормальными векторами.

Cos (l 1 ; l 2) = cos(N 1 ; N 2) = =

3. Косинус угла между прямой и плоскостью можно найти через sin угла между направляющим вектором прямой и нормальным вектором плоскости.

4. 2 прямые || в пространстве, когда их || направляющие вектора

5. 2 плоскости || когда || нормальные вектора

6. Аналогично вводятся понятия перпендикулярности прямых и плоскостей.


Вопрос №14

Различные виды уравнения прямой линии на плоскости(уравнение прямой в отрезках, с угловым коэффициентом и др.)

Уравнение прямой в отрезках:
Допустим, что в общем уравнении прямой:

1. С = 0 Ах + Ву = 0 – прямая проходит через начало координат.

2. а = 0 Ву + С = 0 у =

3. в = 0 Ах + С = 0 х =

4. в=С=0 Ах = 0 х = 0

5. а=С=0 Ву = 0 у = 0

Уравнение прямой с угловым коэффициентом:

Любая прямая, не равная оси ОУ (В не=0), может быть записана в след. виде:

k = tgα α – угол между прямой и положительно направленной линией ОХ

b – точка пересечения прямой с осью ОУ

Док-во:

Ах+Ву+С = 0

Ву= -Ах-С |:В

Уравнение прямой по двум точкам:


Вопрос №16

Конечный предел функции в точке и при x→∞

Конечный предел в точке х 0:

Число А называется пределом функции y = f(x) при x→х­ 0­ , если для любого Е > 0 существует б > 0 такое, что при х ≠x 0 , удовлетворяющее неравенству |х – х 0 | < б, выполняется условие |f(x) - A| < Е

Предел обозначается: = A

Конечный предел в точке +∞:

Число А называется пределом функции y = f(x) при x→ + ∞ , если для любого Е > 0 существует С > 0, такое что при x > C выполняется неравенство |f(x) - A| < Е

Предел обозначается: = A

Конечный предел в точке -∞:

Число А называется пределом функции y = f(x) при x→-∞, если для любого Е < 0 существует С < 0 такое, что при х < -С выполняется неравенство |f(x) - A| < Е

Каноническими уравнениями прямой в пространстве называются уравнения, определяющие прямую, проходящую через заданную точку коллинеарно направляющему вектору.

Пусть дана точка и направляющий вектор . Произвольная точка лежит на прямой l только в том случае, если векторы и коллинеарны, т. е. для них выполняется условие:

.

Приведённые выше уравнения и есть канонические уравнения прямой.

Числа m , n и p являются проекциями направляющего вектора на координатные оси. Так как вектор ненулевой, то все числа m , n и p не могут одновременно равняться нулю. Но одно или два из них могут оказаться равными нулю. В аналитической геометрии допускается, например, такая запись:

,

которая означает, что проекции вектора на оси Oy и Oz равны нулю. Поэтому и вектор , и прямая, заданная каноническими уравнениями, перпендикулярны осям Oy и Oz , т. е. плоскости yOz .

Пример 1. Составить уравнения прямой в пространстве, перпендикулярной плоскости и проходящей через точку пересечения этой плоскости с осью Oz .

Решение. Найдём точку пересечения данной плоскости с осью Oz . Так как любая точка, лежащая на оси Oz , имеет координаты , то, полагая в заданном уравнении плоскости x = y = 0 , получим 4z - 8 = 0 или z = 2 . Следовательно, точка пересечения данной плоскости с осью Oz имеет координаты (0; 0; 2) . Поскольку искомая прямая перпендикулярна плоскости, она параллельна вектору её нормали . Поэтому направляющим вектором прямой может служить вектор нормали заданной плоскости.

Теперь запишем искомые уравнения прямой, проходящей через точку A = (0; 0; 2) в направлении вектора :

Уравнения прямой, проходящей через две данные точки

Прямая может быть задана двумя лежащими на ней точками и В этом случае направляющим вектором прямой может служить вектор . Тогда канонические уравнения прямой примут вид

.

Приведённые выше уравнения и определяют прямую, проходящую через две заданные точки.

Пример 2. Составить уравнение прямой в пространстве, проходящей через точки и .

Решение. Запишем искомые уравнения прямой в виде, приведённом выше в теоретической справке:

.

Так как , то искомая прямая перпендикулярна оси Oy .

Прямая как линия пересечения плоскостей

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и , т. е. как множество точек, удовлетворяющих системе двух линейных уравнений

Уравнения системы называются также общими уравнениями прямой в пространстве.

Пример 3. Составить канонические уравнения прямой в пространстве, заданной общими уравнениями

Решение. Чтобы написать канонические уравнения прямой или, что то же самое, уравнения прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например yOz и xOz .

Точка пересечения прямой с плоскостью yOz имеет абсциссу x = 0 . Поэтому, полагая в данной системе уравнений x = 0 , получим систему с двумя переменными:

Её решение y = 2 , z = 6 вместе с x = 0 определяет точку A (0; 2; 6) искомой прямой. Полагая затем в заданной системе уравнений y = 0 , получим систему

Её решение x = -2 , z = 0 вместе с y = 0 определяет точку B (-2; 0; 0) пересечения прямой с плоскостью xOz .

Теперь запишем уравнения прямой, проходящей через точки A (0; 2; 6) и B (-2; 0; 0) :

,

или после деления знаменателей на -2:

,

Уравнение прямой проходящей через две точки. В статье " " я обещал вам разобрать второй способ решения представленных задач на нахождение производной, при данном графике функции и касательной к этому графику. Этот способ мы разберём в , не пропустите! Почему в следующей?

Дело в том, что там будет использоваться формула уравнения прямой. Конечно, можно было бы просто показать данную формулу и посоветовать вам её выучить. Но лучше объяснить – от куда она исходит (как выводится). Это необходимо! Если вы её забудете, то быстро восстановить её не представит труда. Ниже подробно всё изложено. Итак, у нас на координатной плоскости имеется две точки А (х 1 ;у 1) и В(х 2 ;у 2), через указанные точки проведена прямая:

Вот сама формула прямой:


*То есть при подстановке конкретных координат точек мы получим уравнение вида y=kx+b.

**Если данную формулу просто «зазубрить», то имеется большая вероятность запутаться с индексами при х . Кроме того, индексы могут обозначаться по разному, например:

Поэтому-то и важно понимать смысл.

Теперь вывод этой формулы. Всё очень просто!


Треугольники АВЕ и ACF подобны по острому углу (первый признак подобия прямоугольных треугольников). Из этого следует, что отношения соответственных элементов равны, то есть:

Теперь просто выражаем данные отрезки через разность координат точек:

Конечно, не будет никакой ошибки если вы запишите отношения элементов в другом порядке (главное соблюдать соответствие):

В результате получится одно и тоже уравнение прямой. Это всё!

То есть, как бы не были обозначены сами точки (и их координаты), понимая данную формулу вы всегда найдёте уравнение прямой.

Формулу можно вывести используя свойства векторов, но принцип вывода будет тот же, так как речь будет идти о пропорциональности их координат. В этом случае работает всё то же подобие прямоугольных треугольников. На мой взгляд описанный выше вывод более понятнее)).

Посмотреть вывод через координаты векторов >>>

Пусть на координатной плоскости построена прямая, проходящая через две заданные точки А(х 1 ;у 1) и В(х 2 ;у 2). Отметим на прямой произвольную точку С с координатами (x ; y ). Также обозначим два вектора:


Известно, что у векторов лежащих на параллельных прямых (либо на одной прямой), их соответствующие координаты пропорциональны, то есть:

— записываем равенство отношений соответствующих координат:

Рассмотрим пример:

Найти уравнение прямой, проходящей через две точки с координатами (2;5) и (7:3).

Можно даже не строить саму прямую. Применяем формулу:

Важно, чтобы вы уловили соответствие, при составлении соотношения. Вы не ошибётесь, если запишите:

Ответ: у=-2/5x+29/5 иди у=-0,4x+5,8

Для того, чтобы убедится, что полученное уравнение найдено верно, обязательно делайте проверку — подставьте в него координаты данных в условии точек. Должны получится верные равенства.

На этом всё. Надеюсь, материал был вам полезен.

С уважением, Александр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Yandex.RTB R-A-339285-1

Пусть на плоскости задана прямоугольная система координат O x y .

Теорема 1

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А, В, С.

Доказательство

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 (x 0 , y 0) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A (x - x 0) + B (y - y 0) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A (x - x 0) + B (y - y 0) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = (A , B) и M 0 M → = (x - x 0 , y - y 0) . Таким образом, множество точек M (x , y) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = (A , B) . Можем предположить, что это не так, но тогда бы векторы n → = (A , B) и M 0 M → = (x - x 0 , y - y 0) не являлись бы перпендикулярными, и равенство A (x - x 0) + B (y - y 0) = 0 не было бы верным.

Следовательно, уравнение A (x - x 0) + B (y - y 0) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 (x 0 , y 0) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = (A , B) .

Пусть также существует некоторая точка M (x , y) – плавающая точка прямой. В таком случае, векторы n → = (A , B) и M 0 M → = (x - x 0 , y - y 0) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A (x - x 0) + B (y - y 0) = 0

Перепишем уравнение A x + B y - A x 0 - B y 0 = 0 , определим C: C = - A x 0 - B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Определение 1

Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y - 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = (2 , 3) . Изобразим заданную прямую линию на чертеже.

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y - 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Определение 2

Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А, В, С отличны от нуля. В ином случае уравнение является неполным .

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение - C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек (x , y) , координаты которых равны одному и тому же числу - C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел (0 , 0) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Пример 1

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , - 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

A · 2 7 + C = 0

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = - 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x - 2 = 0

Ответ: 7 x - 2 = 0

Пример 2

На чертеже изображена прямая, необходимо записать ее уравнение.

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку (0 , 3) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки (0 , 3) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С: С = - 3 . Используем известные значения В и С, получаем требуемое уравнение прямой: y - 3 = 0 .

Ответ: y - 3 = 0 .

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 (x 0 , y 0) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A (x - x 0) + B (y - y 0) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 (x 0 , y 0) и имеет нормальный вектор n → = (A , B) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Пример 3

Даны точка М 0 (- 3 , 4) , через которую проходит прямая, и нормальный вектор этой прямой n → = (1 , - 2) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = - 2 , x 0 = - 3 , y 0 = 4 . Тогда:

A (x - x 0) + B (y - y 0) = 0 ⇔ 1 · (x - (- 3)) - 2 · y (y - 4) = 0 ⇔ ⇔ x - 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x - 2 · y + C = 0 ⇔ x - 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 (- 3 , 4) , через которую проходит прямая. Координаты этой точки отвечают уравнению x - 2 · y + C = 0 , т.е. - 3 - 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x - 2 · y + 11 = 0 .

Ответ: x - 2 · y + 11 = 0 .

Пример 4

Задана прямая 2 3 x - y - 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна - 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = - 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 - y 0 - 1 2 = 0

Определяем y 0: 2 3 · (- 3) - y 0 - 1 2 = 0 ⇔ - 5 2 - y 0 = 0 ⇔ y 0 = - 5 2

Ответ: - 5 2

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x - x 1 a x = y - y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = - B y .

Это равенство возможно записать как пропорцию: x + C A - B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = - B y - C . Выносим – В за скобки, тогда: A x = - B y + C B .

Перепишем равенство в виде пропорции: x - B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Пример 5

Задано общее уравнение прямой 3 y - 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y - 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим - 3 за скобки; получаем: 0 x = - 3 y - 4 3 .

Запишем полученное равенство как пропорцию: x - 3 = y - 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x - 3 = y - 4 3 0 .

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Пример 6

Прямая задана уравнением 2 x - 5 y - 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x - 5 y - 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = - 1 5 + 2 · λ , λ ∈ R

Ответ: x = 5 · λ y = - 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = - A x - C . Разделим обе части полученного равенство на B , отличное от нуля: y = - A B x - C B .

Пример 7

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y - 2 x ⇔ y = - 2 7 x

Ответ: y = - 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y:

A x + B y + C = 0 ⇔ A x + B y = - C ⇔ ⇔ A - C x + B - C y = 1 ⇔ x - C A + y - C B = 1

Пример 8

Необходимо преобразовать общее уравнение прямой x - 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x - 7 y + 1 2 = 0 ⇔ x - 7 y = - 1 2 .

Разделим на -1/2 обе части равенства: x - 7 y = - 1 2 ⇔ 1 - 1 2 x - 7 - 1 2 y = 1 .

Ответ: x - 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y - 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y - k x - b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x (y - y 1) ⇔ ⇔ a y x - a x y - a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ A x + B y + C = 0

Пример 9

Заданы параметрические уравнения прямой x = - 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = - 1 + 2 · λ y = 4 ⇔ x = - 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y - 4 0 ⇔ x + 1 2 = y - 4 0

Перейдем от канонического к общему:

x + 1 2 = y - 4 0 ⇔ 0 · (x + 1) = 2 (y - 4) ⇔ y - 4 = 0

Ответ: y - 4 = 0

Пример 10

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y - 1 = 0

Ответ: 1 3 x + 2 y - 1 = 0 .

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A (x - x 0) + B (y - y 0) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Пример 11

Задана прямая, параллельная прямой 2 x - 3 y + 3 3 = 0 . Также известна точка M 0 (4 , 1) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = (2 , - 3) : 2 x - 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A (x - x 0) + B (y - y 0) = 0 ⇔ 2 (x - 4) - 3 (y - 1) = 0 ⇔ 2 x - 3 y - 5 = 0

Ответ: 2 x - 3 y - 5 = 0 .

Пример 12

Заданная прямая проходит через начало координат перпендикулярно прямой x - 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x - 2 3 = y + 4 5 .

Тогда n → = (3 , 5) . Прямая проходит через начало координат, т.е. через точку О (0 , 0) . Составим общее уравнение заданной прямой:

A (x - x 0) + B (y - y 0) = 0 ⇔ 3 (x - 0) + 5 (y - 0) = 0 ⇔ 3 x + 5 y = 0

Ответ : 3 x + 5 y = 0 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В данной статье мы рассмотрим общее уравнение прямой на плоскости. Приведем примеры построения общего уравнения прямой, если известны две точки этой прямой или если известна одна точка и нормальный вектор этой прямой. Представим методы преобразования уравнения в общем виде в канонический и параметрический виды.

Пусть задана произвольная декартова прямоугольная система координат Oxy . Рассмотрим уравнение первой степени или линейное уравнение:

Ax+By+C =0, (1)

где A, B, C − некоторые постоянные, причем хотя бы один из элементов A и B отлично от нуля.

Мы покажем, что линейное уравнение на плоскости определяет прямую. Докажем следующую теорему.

Теорема 1. В произвольной декартовой прямоугольной системе координат на плоскости каждая прямая линия может быть задана линейным уравнением. Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат на плоскости определяет прямую линию.

Доказательство. Достаточно доказать, что прямая L определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.

Пусть на плоскости задана прямая L . Выберем систему координат так, чтобы ось Ox совпадал с прямой L , а ось Oy был перпендикулярной к ней. Тогда уравнение прямой L примет следующий вид:

y=0. (2)

Все точки на прямой L будут удовлетворять линейному уравнению (2), а все точки вне этой прямой, не будут удовлетворять уравнению (2). Первая часть теоремы доказана.

Пусть задана декартова прямоугольная система координат и пусть задана линейное уравнение (1), где хотя бы один из элементов A и B отличен от нуля. Найдем геометрическое место точек, координаты которых удовлетворяют уравнению (1). Так как хотя бы один из коэффициентов A и B отличен от нуля, то уравнение (1) имеет хотя бы одно решение M (x 0 ,y 0). (Например, при A ≠0, точка M 0 (−C/A , 0) принадлежит данному геометрическому месту точек). Подставляя эти координаты в (1) получим тождество

Ax 0 +By 0 +C =0. (3)

Вычтем из (1) тождество (3):

A (x x 0)+B (y y 0)=0. (4)

Очевидно, что уравнение (4) эквивалентно уравнению (1). Поэтому достаточно доказать, что (4) определяет некоторую прямую.

Поскольку мы рассматриваем декартову прямоугольную систему координат, то из равенства (4) следует, что вектор с компонентами {x−x 0 , y−y 0 } ортогонален вектору n с координатами {A,B }.

Рассмотрим некоторую прямую L , проходящую через точку M 0 (x 0 , y 0) и перпендикулярной вектору n (Рис.1). Пусть точка M (x ,y) принадлежит прямой L . Тогда вектор с координатами x−x 0 , y−y 0 перпендикулярен n и уравнение (4) удовлетворено (скалярное произведение векторов n и равно нулю). Обратно, если точка M (x ,y) не лежит на прямой L , то вектор с координатами x−x 0 , y−y 0 не ортогонален вектору n и уравнение (4) не удовлетворено. Теорема доказана.

Доказательство. Так как прямые (5) и (6) определяют одну и ту же прямую, то нормальные векторы n 1 ={A 1 ,B 1 } и n 2 ={A 2 ,B 2 } коллинеарны. Так как векторы n 1 ≠0, n 2 ≠0, то существует такое число λ , что n 2 =n 1 λ . Отсюда имеем: A 2 =A 1 λ , B 2 =B 1 λ . Докажем, что C 2 =C 1 λ . Очевидно, что совпадающие прямые имеют общую точку M 0 (x 0 , y 0). Умножая уравнение (5) на λ и вычитая из него уравнение (6) получим:

Так как выполнены первые два равенства из выражений (7), то C 1 λ C 2 =0. Т.е. C 2 =C 1 λ . Замечание доказано.

Заметим, что уравнение (4) определяет уравнение прямой, проходящей через точку M 0 (x 0 , y 0) и имеющий нормальный вектор n ={A,B }. Поэтому, если известен нормальный вектор прямой и точка, принадлежащая этой прямой, то можно построить общее уравнение прямой с помощью уравнения (4).

Пример 1. Прямая проходит через точку M =(4,−1) и имеет нормальный вектор n ={3, 5}. Построить общее уравнение прямой.

Решение. Имеем: x 0 =4, y 0 =−1, A =3, B =5. Для построения общего уравнения прямой, подставим эти значения в уравнение (4):

Ответ:

Вектор параллелен прямой L и, следовательно, перпердикулярен нормальному вектору прямой L . Построим нормальный вектор прямой L , учитывая, что скалярное произведение векторов n и равно нулю. Можем записать, например, n ={1,−3}.

Для построения общего уравнения прямой воспользуемся формулой (4). Подставим в (4) координаты точки M 1 (можем взять также координаты точки M 2) и нормального вектора n :

Подставляя координаты точек M 1 и M 2 в (9) можем убедится, что прямая заданная уравнением (9) проходит через эти точки.

Ответ:

Вычтем (10) из (1):

Мы получили каноническое уравнение прямой. Вектор q ={−B , A } является направляющим вектором прямой (12).

Обратное преобразование смотрите .

Пример 3. Прямая на плоскости представлена следующим общим уравнением:

Переместим на право вторую слагаемую и разделим обе части уравнения на 2·5.


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав