22.09.2019

Выращивание кристаллов в домашних условиях. Применение искусственных кристаллов


В природе монокристаллы большинства веществ без трещин, загрязнений и других дефектов встречаются крайне редко. Это привело к тому, что многие кристаллы на протяжении тысячелетий люди называют драгоценными камнями. Алмаз, рубин, сапфир, аметист и другие драгоценные камни долгое время ценились людьми очень высоко в основном не за особые механические пли другие физические свойства, а лишь из-за своей редкости.

Развитие науки и техники привело к тому, что многие драгоценные камни или просто редко встречающиеся в природе кристаллы стали очень нужными для изготовления деталей приборов и машин, для выполнения научных исследований. Потребность во многих кристаллах возросла настолько, что удовлетворить ее за счет расширения масштабов выработки старых и поисков новых природных месторождений оказалось невозможно.

Кроме того, для многих отраслей техники и особенно для выполнения научных исследований все чаще требуются монокристаллы очень высокий химической чистоты с совершенной кристаллической структурой. Кристаллы, встречающиеся в природе, этим требованиям не удовлетворяют, так как они растут в условиях, весьма далеких от идеальных.

Таким образом, возникла задача разработки технологии искусственного изготовления монокристаллов многих элементов и химических соединений.

Разработка сравнительно простого способа изготовления «драгоценного камня» приводит к тому, что он перестает быть драгоценным. Объясняется это тем, что большинство драгоценных камней является кристаллами широко распространенных в природе химических элементов и соединений. Так, алмаз - это кристалл углерода, рубин и сапфир - кристаллы окиси алюминия с различными примесями.

Рассмотрим основные способы выращивания монокристаллов. На первый взгляд может показаться, что осуществить кристаллизацию из расплава очень просто. Достаточно нагреть вещество выше температуры плавления, получить расплав, а затем охладить его. В принципе это правильный путь, но если не принять специальных мер, то в лучшем случае получится поликристаллический образец. А если опыт проводить, например, с кварцем, серой, селеном, сахаром, способными в зависимости от скорости охлаждения их расплавов затвердевать в кристаллическом или аморфном состоянии, то нет никакой гарантии, что не будет получено аморфное тело.

Для того чтобы вырастить один монокристалл, недостаточно медленного охлаждения. Нужно сначала охладить один небольшой участок расплава и получить в нем «зародыш» кристалла, а затем, последовательно охлаждая расплав, окружающий «зародыш», дать возможность разрастись кристаллу по всему объему расплава. Этот процесс можно обеспечить медленным опусканием тигля с расплавом сквозь отверстие в вертикальной трубчатой печи. Кристалл зарождается на дне тигля, так как оно раньше попадает в область более низких температур, а затем постепенно разрастается по всему объему расплава. Дно тигля специально делают узким, заостренным на конус, чтобы в нем мог расположиться только один кристаллический зародыш.

Этот способ часто применяется для выращивания кристаллов цинка, серебра, алюминия, меди и других металлов, а также хлористого натрия, бромистого калия, фтористого лития и других солей, используемых оптической промышленностью. За сутки можно вырастить кристалл каменной соли массой порядка килограмма.

Недостатком описанного метода является загрязнение кристаллов материалом тигля.

Этого недостатка лишен бестигельный способ выращивания кристаллов из расплава, которым выращивают, например, корунд, (рубины, сапфиры). Тончайший порошок окиси алюминия из зерен размером 2-100 мкм высыпается тонкой струёй из бункера, проходит через кислородно-водородное пламя, плавится и в виде капель попадает на стержень из тугоплавкого материала. Температура стержня поддерживается несколько ниже температуры плавления окиси алюминия (2030°С). Капли окиси алюминия охлаждаются на нем и образуют корку спекшейся массы корунда. Часовой механизм медленно (10-20 мм/ч) опускает стержень, и на нем постепенно вырастает не ограненный кристалл корунда.

Как и в природе, получение кристаллов из раствора сводится к двум способам. Первый из них состоит в медленном испарении растворителя из насыщенного раствора, а второй - в медленном понижении температуры раствора. Чаще применяют второй способ. В качестве растворителей используют воду, спирты, кислоты, расплавленные соли и металлы. Недостатком методов выращивания кристаллов из раствора является возможность загрязнения кристаллов частицами растворителя.

Кристалл растет из тех участков пересыщенного раствора, которые его непосредственно окружают. В результате этого вблизи кристалла раствор оказывается менее пересыщенным, чем вдали от него. Так как пересыщенный раствор тяжелее насыщенного, то над поверхностью растущего кристалла всегда имеется направленный вверх поток «использованного» раствора. Без такого перемешивания раствора рост кристаллов быстро бы прекратился. Поэтому часто дополнительно перемешивают раствор или закрепляют кристалл на вращающемся держателе. Это позволяет выращивать более совершенные кристаллы.

Чем меньше скорость роста, тем лучше получаются кристаллы. Это правило справедливо для всех методов выращивания. Кристаллы сахара и поваренной соли легко получить из водного раствора в домашних условиях. Но, к сожалению, не все кристаллы можно вырастить так просто. Например, получение кристаллов кварца из раствора происходит при температуре 400°С и давлении 1000 ат.

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся несколькими примерами.

Самый твердый и самый редкий из природных минералов - алмаз. За всю историю человечества его добыто всего около 150 т, хотя в мировой алмазодобывающей промышленности сейчас работает почти миллион человек. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Около 80% всех добываемых природных алмазов и все искусственные алмазы используются в промышленности. Роль алмазов в современной технике так велика, что, по подсчетам американских экономистов, прекращение применения алмазов привело бы к уменьшению мощности промышленности США вдвое.

Примерно 80% применяемых в технике алмазов идет на заточку инструментов и резцов "сверхтвердых сплавов". Алмазы служат опорными камнями (подшипниками) в хронометрах высшего класса для морских судов и в других особо точных навигационных приборах. На алмазных подшипниках не обнаруживается никаких следов износа даже после 25 000 000 оборотов.

Несколько уступая алмазу по твердости, соревнуется с ним но разнообразию технических применении рубин - благородный корунд, окись алюминия Al 2 O 3 с красящей примесью окиси хрома. Из 1 кг синтетического рубина удается изготовить около 40 000 опорных камней для часов. Незаменимыми оказались рубиновые стержни на фабриках по изготовлению тканей из химического волокна. На изготовление 1 м ткани из искусственного волокна требуется израсходовать сотни тысяч метров волокна. Нитеводители из самого твердого стекла изнашиваются за несколько дней при протяжке через них искусственного волокна, агатовые способны работать до двух месяцев, рубиновые нитеводители оказываются практически вечными.

Новая область для широкого применения рубинов в научных исследованиях и в технике открылась с изобретением рубинового лазера - прибора, в котором рубиновый стержень служит мощным источником света, испускаемого в виде тонкого светового луча.

Исключительная роль выпала на долю кристаллов в современной электронике. Большинство полупроводниковых электронных приборов изготовлено из кристаллов германия или кремния.

Применение кристаллов в науке и технике Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить.

Алмаз Самый твердый и самый редкий из природных минералов ал маз. Сегодня алмаз в первую очередь камень работник, а не камень украшение.

Благодаря своей исключительной твердости алмаз играет гро мадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила это большой (до 2 х метров в диаметре) вращаю щийся стальной диск, на краях которого сделаны надрезы или за рубки. Мелкий порошок алмаза, смешанный с каким нибудь клей ким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.

Колоссальное значение имеет алмаз при бурении горных пород, в горных работах. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия. Алмазным порошком шлифуют и полируют твердые камни, за каленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее от ветственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво красный рубин и лазарево синий сапфир это родные братья, это вообще один и тот же мине рал корунд, окись алюминия А 12 О 3. Разница в цвете возникла из за очень малых примесей в окиси алюминия: ничтожная добавка хрома превращает бесцветный корунд в кроваво красный рубин, окись ти тана в сапфир. Есть корунды и других цветов. Есть у них ещё со всем скромный, невзрачный брат: бурый, непрозрачный, мелкий ко рунд наждак, которым чистят металл, из которого делают наждач ную шкурку. Корунд со всеми его разновидностями это один из самых твердых камней на Земле, самый твердый после алмаза.

Вся часовая промышленность работает на искусственных руби нах. На полупроводниковых заводах тончайшие схемы рисуют ру биновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных воло кон, из капрона, из нейлона.

Мощный луч лазера громадный мощностью. Он легко прожига ет листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых спла вах, алмазе. Эти функции выполняет твердый лазер, где использует ся рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные ла зеры на арсениде галлия.

Кремень, аметист, яшма, опал, халцедон - все это разновидно сти кварца. Мелкие зернышки кварца образуют песок.

А самая кра сивая, самая чудесная разновидность кварца это и есть горный хрусталь, т. е. прозрачные кристаллы кварца. Поэтому из прозрачно го кварца делают линзы, призмы и др. детали оптических приборов. Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это пьезоэлектрический эффект в кристал лах.

В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезирован ные вещества: синетову соль, титанат бария, дигидрофосфаты калия и аммония (КДР и АДР) и многие другие. Пьезоэлектрические кристаллы широко применяются для вос произведения, записи и передачи звука.

Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений. Пьезоэлектропластинками измеряют, например, давление в стволе артиллерийского орудия при выстреле, давление в момент взрыва бомбы, мгновенные давления в цилиндрах двигате лей при взрыве в них горячих газов.

Эдектрооптическая промышленность это промышленность кристаллов, не имеющих центра симметрии. Эта промышленность очень велика и разнообразна, на её заводах выращивают и обраба тывают сотни наименований кристаллов для применения в оптике, акустике, радиоэлектронике, в лазерной технике.

В технике также нашел своё применение поликристаллический материал поляроид. Поляроид это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества, двупреломляющего и поляризующего свет. Все кристаллики распо ложены параллельно другу, поэтому все они одинаково поляри зуют свет, проходящий через пленку. Поляроидные пленки применяются в поляроидных очках. По ляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно прихо дится смотреть на ослепительное отражение солнечных лучей от за леденевшего снежного поля.

Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из за того, что огни встречной машины ослепляют шофера, и он не видит этой машины. Если же ветровые стекла автомобилей и стекла автомо бильных фонарей сделать из поляроида, причем повернуть оба поля роида так, чтобы их оптические оси были смещены, то ветровое стекло не пропустит света фонарей встречного автомобиля, "погасит его".

Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.

Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.

Кристаллы используются также в некоторых мазерах для усиления волн СВЧ диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.

Применение кристаллов в науке и технике

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся не-сколькими примерами.

Самый твердый и самый редкий из природных минералов - ал-маз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение.

Благодаря своей исключительной твердости алмаз играет гро-мадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращаю-щийся стальной диск, на краях которого сделаны надрезы или за-рубки. Мелкий порошок алмаза, смешанный с каким-нибудь клей-ким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.

Колоссальное значение имеет алмаз при бурении горных пород, в горных работах.

В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия.

Алмазным порошком шлифуют и полируют твердые камни, за-каленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее от-ветственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво-красный рубин и лазарево-синий сапфир - это родные братья, это вообще один и тот же мине-рал - корунд, окись алюминия А12О3. Разница в цвете возникла из-за очень малых примесей в окиси алюминия: ничтожная добавка хрома превращает бесцветный корунд в кроваво-красный рубин, окись ти-тана - в сапфир. Есть корунды и других цветов. Есть у них ещё со-всем скромный, невзрачный брат: бурый, непрозрачный, мелкий ко-рунд - наждак, которым чистят металл, из которого делают наждач-ную шкурку. Корунд со всеми его разновидностями - это один из самых твердых камней на Земле, самый твердый после алмаза. Ко-рундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки.

Вся часовая промышленность работает на искусственных руби-нах. На полупроводниковых заводах тончайшие схемы рисуют ру-биновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных воло-кон, из капрона, из нейлона.

Новая жизнь рубина - это лазер или, как его называют в науке, оптический квантовый генератор (ОКГ), чудесный прибор наших дней. В 1960г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет. Лазер светит ярче тысячи солнц.

Мощный луч лазера громадный мощностью. Он легко прожига-ет листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых спла-вах, алмазе. Эти функции выполняет твердый лазер, где использует-ся рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные ла-зеры на арсениде галлия.

Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др.

Сапфир прозрачен, поэтому из него делают пластины для опти-ческих приборов.

Основная масса кристаллов сапфира идет в полупроводниковую промышленность.

Кремень, аметист, яшма, опал, халцедон - все это разновидно-сти кварца. Мелкие зернышки кварца образуют песок. А самая кра-сивая, самая чудесная разновидность кварца - это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачно-го кварца делают линзы, призмы и др. детали оптических приборов.

Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это - пьезоэлектрический эффект в кристал-лах.

В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезирован-ные вещества: синетову соль, титанат бария, дигидрофосфаты калия и аммония (КДР и АДР) и многие другие.

Пьезоэлектрические кристаллы широко применяются для вос-произведения, записи и передачи звука.

Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений.Пьезоэлектропластинками измеряют, например, давление в стволе артиллерийского орудия при выстреле, давление в момент взрыва бомбы, мгновенные давления в цилиндрах двигате-лей при взрыве в них горячих газов.

Эдектрооптическая промышленность - это промышленность кристаллов, не имеющих центра симметрии. Эта промышленность очень велика и разнообразна, на её заводах выращивают и обраба-тывают сотни наименований кристаллов для применения в оптике, акустике, радиоэлектронике, в лазерной технике.

В технике также нашел своё применение поликристаллический материал поляроид.

Поляроид - это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества, двупреломляющего и поляризующего свет. Все кристаллики распо-ложены параллельно друг другу, поэтому все они одинаково поляри-зуют свет, проходящий через пленку.

Поляроидные пленки применяются в поляроидных очках. По-ляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно прихо-дится смотреть на ослепительное отражение солнечных лучей от за-леденевшего снежного поля.

Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из-за того, что огни встречной машины ослепляют шофера, и он не видит этой машины. Если же ветровые стекла автомобилей и стекла автомо-бильных фонарей сделать из поляроида, причем повернуть оба поля-роида так, чтобы их оптические оси были смещены, то ветровое стекло не пропустит света фонарей встречного автомобиля, "погасит его".

Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.
Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.
Кристаллы используются также в некоторых мазерах для усиления волн СВЧ - диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.

Кристаллы встречаются нам по всюду: мы ходим по кристаллам, строим из них, выращиваем их в лабораториях и в заводских установках, создаём приборы и изделия из кристаллов, широко применяем их в технике и науке, едим кристаллы (поваренную соль), лечимся ими, находим кристаллы в живых организмах, выходим на просторы космических дорог, используя приборы из кристаллов.

Кристаллы являются незаменимыми во многих областях человеческого существования.

Самый твердый и самый редкий из природных минералов - алмаз. За всю историю человечества его добыто всего около 150 т, хотя в мировой алмазодобывающей промышленности сейчас работает почти миллион человек. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Около 80% всех добываемых природных алмазов и все искусственные алмазы используются в промышленности. Роль алмазов в современной технике так велика, что, по подсчетам американских экономистов, прекращение применения алмазов привело бы к уменьшению мощности промышленности США вдвое.

Примерно 80% применяемых в технике алмазов идет на заточку инструментов и резцов «сверхтвердых сплавов». Алмазы служат опорными камнями (подшипниками) в хронометрах высшего класса для морских судов и в других особо точных навигационных приборах. На алмазных подшипниках не обнаруживается никаких следов износа даже после 25000000 оборотов.

Несколько уступая алмазу по твердости, соревнуется с ним но разнообразию технических применении рубин. Новая область для широкого применения рубинов в научных исследованиях и в технике открылась с изобретением рубинового лазера - прибора, в котором рубиновый стержень служит мощным источником света, испускаемою в виде тонкого светового луча.

Исключительная роль выпала на долю кристаллов в современной электронике. Большинство полупроводниковых электронных приборов изготовлено из кристаллов германия или кремния.

Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов.

Один из способов контроля ответственных деталей механизмов и машин - ультразвуковая дефектоскопия. Главный элемент УЗД дефектоскопа - кварцевая пластинка. Отраженная дефектом звуковая волна создает переменное электрическое поле (Эффект Холла). Пьезоэлектрический эффект в сильной степени проявляется в кристаллах титана, свинца, его производных. Такие кристаллы - основа пьезоэлектрических микрофонов и телефонов. Они преобразуют давление в электродвижущую силу в манометрах, служат для стабилизации частоты радиопередатчиков, измерения механических напряжений и вибраций.

Сегнетоэлектрики - это кристаллические вещества, обладающие уникальными свойствами, например, способностью к самопроизвольной электрической поляризации, которая может возникать даже в отсутствии внешнего поля. Впервые это свойство было обнаружено И.В. Курчатовым и П.П. Кобяко при исследовании кристаллов сегнетовой соли (NaKC4H4O6*4H2О). Сегнетоэлектрики характеризуются анизотропией. Температура, ограничивающая область сегнетоэлектрических свойств - точка Кюри. Причина таких свойств сегнетоэлектриков - взаимодействие входящих в них кристаллы молекул приводит к самопроизвольной поляризации диэлектриков. Важное практическое значение - емкость конденсатора пропорциональна е диэлектрика, помещенного между обкладками. Поэтому, используя диэлектрик с большой е можно получить малогабаритные конденсаторы. В технике применяют сегнетоэлектрические конденсаторы на основе титаната бария, у которого точка Кюри примерно 133°С, диэлектрическая проницаемость е примерно равна 6000 - 7000.

Полупроводниковые кристаллы позволяют создавать сложные электронные полупроводниковые приборы, интегральные схемы. Новая область техники называют твердотельной электроникой.

В 1955 году Басов, Прохоров, Таунсон (США) создали генератор квантов электромагнитного излучения (мазер) сантиметрового диапазона. А в 1960г. Мейманом был запущен первый генератор оптического диапазона. Важнейшую роль в получении лазерного луча играл кристалл рубина (Al2O3) с добавкой хрома. Лазеры нашли широкое применение в промышленности для различных видов обработки материалов, сверление отверстий, сварки тонких изделий. Основная область применения маломощных импульсных лазеров с микроэлектроникой, в электровакуумной промышленности, машиностроении, медицине.

Жидкие кристаллы имеют не менее широкую сферу применения.

В повседневной жизни мы сталкиваемся с часами, термометрами на жидких кристаллах. В наше время наука стала производительной силой, и поэтому, как правило, повышенный научный интерес к тому или иному явлению или объекту означает, что это явление или объект представляет интерес для материального производства. В этом отношении не являются исключением и жидкие кристаллы. Интерес к ним прежде всего обусловлен возможностями их эффективного применения в ряде отраслей производственной деятельности. Внедрение жидких кристаллов означает экономическую эффективность, простоту, удобство.

Многие оптические эффекты в жидких кристаллах, о которых рассказывалось выше, уже освоены техникой и используются в изделиях массового производства. Например, всем известны часы с индикатором на жидких кристаллах, но не все еще знают, что те же жидкие кристаллы используются для производства наручных часов, в которые встроен калькулятор.

Союз микроэлектроники и жидких кристаллов оказывается чрезвычайно эффективным не только в готовом изделии, но и на стадии изготовления интегральных схем. Как известно, одним из этапов производства микросхем является фотолитография, которая состоит в нанесении на поверхность полупроводникового материала специальных масок, а затем в вытравливании с помощью фотографической техники так называемых литографических окон. Эти окна в результате дальнейшего процесса производства преобразуются в элементы и соединения микроэлектронной схемы. От того, насколько малы размеры соответствующих окон, зависит число элементов схемы, которые могут быть размещены на единице площади полупроводника, а от точности и качества вытравливания окон зависит качество микросхемы. Очень полезным оказалось применение жидких кристаллов на стадии контроля качества литографических работ. Для этого на полупроводниковую пластину с протравленными литографическими окнами наносится ориентированный слой нематика, а затем к ней прикладывается электрическое напряжение.

Перспективы же будущих массовых и эффективных применений жидких кристаллов еще более удивительны.

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся не­сколькими примерами.

Самый твердый и самый редкий из природных минералов - алмаз.

Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Колоссальное значение имеет алмаз при бурении горных пород, в горных работах.

В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия.

Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные.

Вся часовая промышленность работает на искусственных рубинах. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных волокон, из капрона, из нейлона.

Новая жизнь рубина - это лазер или, как его называют в науке, оптический квантовый генератор (ОКГ). В 1960г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет.Для рубинового лазера наименьший диаметр светового пятна составляет примерно 0,7 мкм. Таким образом, можно создать чрезвычайно высокую плотность излучения. То есть максимально сконцентрировать энергию. Мощный луч лазера громадный мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. Эти функции выполняет твердый лазер, где используется рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные лазеры на арсениде галлия. Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др.

Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.

Основная масса кристаллов сапфира идет в полупроводниковую промышленность.

Кремень, аметист, яшма, опал, халцедон - все это разновидности кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов. Кварцевое стекло обладает следующими качествами:

Высокая однородность и хорошее пропускание в ультрафиолетовом, видимом и ближнем инфракрасном диапазонах;

Отсутствие флюоресценции;

Низкий коэффициент теплового расширения;

Высокая устойчивость к механическим повреждениям и тепловому удару;

Низкая пузырность.

Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это - пьезоэлектрический эффект в кристаллах.

В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезированные вещества: синетову соль, титанат бария, дигидрофосфаты калия и аммония (КДР и АДР) и многие другие.

Пьезоэлектрические кристаллы широко применяются для воспроизведения, записи и передачи звука.

Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений.Пьезоэлектропластинками измеряют, например, давление в стволе артиллерийского орудия при выстреле, давление в момент взрыва бомбы, мгновенные давления в цилиндрах двигателей при взрыве в них горячих газов.

В технике также нашел своё применение поликристаллический материал поляроид.

Поляроид - это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества, двупреломляющего и поляризующего свет. Все кристаллики расположены параллельно друг другу, поэтому все они одинаково поляризуют свет, проходящий через пленку.

Поляроидные пленки применяются в поляроидных очках. Поляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно приходится смотреть на ослепительное отражение солнечных лучей от заледеневшего снежного поля.

Жидкие кристаллы

Жи́дкие криста́ллы - вещества, обладающие одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой жидкости, похожие на желе, состоящие из молекул вытянутой формы, определённым образом упорядоченных во всем объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности. По типу ЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередь нематики подразделяются на собственно нематические и холестерические жидкие кристаллы.

Одно из важных направлений использования жидких кристаллов - термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы - сильно нагретые или холодные, неработающие - сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ - информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии.

В основе функционирования любой ЖКИ-панели лежит принцип изменения прозрачности (точнее, изменения поляризации проходящего света) у жидких кристаллов под воздействием электрического тока. В TFT-матрице слой жидких кристаллов управляется матрицей из микроскопических транзисторных аналоговых ключей, по одному ключу на каждый пиксел изображения, что позволяет добиться высокой скорости включения-выключения точек и повысить контрастность изображения. Поскольку жидкие кристаллы сами по себе не имеют цвета, в цветной панели имеется три слоя жидких кристаллов (либо специальная однослойная мозаичная структура) с соответствующими светофильтрами для каждой цветовой составляющей (красный, зеленый, синий). Жидкие кристаллы не могут сами светиться, поэтому для того, чтобы придать экрану привычный светящийся вид, за ЖКИ-панелью установлена специальная плоская лампа, подсвечивающая экран с обратной стороны. В результате пользователю кажется, что матрица "светится", как обычный экран ЭЛТ.

Виды травления: сухое (плазменное) и жидкостное (в жидких травителях, кислота HF). Преимущества сухого травления: возможность контроля анизотропии, возможность контроля селективности, слабая зависимость травления от адгезии защитной маски к подложке, не требует последующих операция промывки и сушки, экономичнее травления в жидких реактивах. Недостатки : повреждение поверхности материалов под действием бомбардировки ионами, электронами и фотонами. Сухое травление делится на:

Основные характеристики сухого травления: анизотропность – отношение скорости травления рабочего материала по нормали к поверхности пластины к скорости его бокового травления; селективность – отношение скоростей травления различных материалов (например рабочего и маски) при одинаковых условиях.

Ионное травление – процесс, при котором поверхностные слои материалов удаляются только в результате физического распыления. Распыление осуществляется энергетическими ионами газов, которые не вступают в химические реакции с обрабатываемым материалом (обычно ионы инертных газов). Если обрабатываемые материал помещен на электродах или держателях, соприкасающихся с плазмой разряда, то травление в таких условиях называют ионно-плазменным . Если же материал помещен в вакуумную зону обработки, отделенную от области плазмы, то травление называют ионно-лучевым.

В плазмохимическом травлении поверхностные слои материалов удаляются только в результате химических реакций между химически активными частицами и атомами травимого вещества. Если обрабатываемый материал находится в области плазмы разряда, то травление называют плазменным. В этом случае химические реакции травления на поверхности материала будут активироваться с помощью бомбардировки низкоэнергетических электронов и ионов, и также фотонной бомбардировки. Если же материал находится в вакуумной зоне обработки, обычно называемой реакционной зоной и отделенной от области плазмы, то травление производят химически активными частицами без активации электронной и ионной бомбардировками, а в ряде случаев и при отсутствии воздействия фотонов. Такое травление называют радикальным .

Плазма используется в основных трех процессах: для травления материалов, для напыления а поверхность материалов тонких пленок (других материалов), для легирования (имплантации) внутрь материала других частиц.

Современное применение плазменных технологий. Основной процесс в технологии фотолитографии (травление металла, plasma ashing (озоление), plasma de-scum(снятие резиста))! Также применяется в технологиях создания: NEMS, MEMS, микроэлектроника, наноэлектроника, гироскопы, акселерометры, травление полимеров, полимерные микроструктуры, керамические микроструктуры, технологии глубокого травления (с высоким аспектным соотношением: отношение между размером характерного элемента и глубиной травления).


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав