22.09.2019

Отражение и преломление света (Граничные условия. Формулы Френеля. Полное внутреннее отражение. Отражение света от поверхности металлов). Уравнения френеля


Допустим, что граница раздела сред плоская и неподвижная. На нее падает плоская монохроматическая волна :

отражённая волна при этом имеет вид:

для преломленной волны имеем:

отраженная и преломленная волны будут тоже плоскими, и иметь ту же частоту: ${\omega }_{pad}=\omega_{otr}=\omega_{pr}=\omega $. Равенство частот следует из линейности и однородности граничных условий.

Разложим электрическое поле каждой волны на две компоненты. Одну, находящуюся в плоскости падения, другая в перпендикулярной плоскости. Эти составляющие называют главными составляющими волн. Тогда можно записать:

где ${{\overrightarrow{e}}_x,\overrightarrow{e}}_y,\ {\overrightarrow{e}}_z$ -- единичные векторы вдоль осей $X$,$Y$,$Z.$ ${\overrightarrow{e}}_1,\ {\overrightarrow{e}}"_1,{\overrightarrow{e}}_2$ -- единичные векторы, которые находятся, в плоскости падения и перпендикулярны соответственно, падающему, отраженному и преломленному лучам (рис.1). То есть можно записать:

Рисунок 1.

Скалярно умножим выражение (2.а) на вектор ${\overrightarrow{e}}_x,$ получаем:

Аналогичным путем получают:

Так, выражения (4) и (5) дают $x-$, $y-$. $z-$ составляющие электрического поля на границе раздела веществ (при $z=0$). Если не учитывать магнитных свойств вещества ($\overrightarrow{H}\equiv \overrightarrow{B}$), то компоненты магнитного поля можно записать как:

Соответствующие выражения для отраженной волны имеют вид:

Для преломленной волны:

Для нахождения $E_{pr\bot }$,$\ E_{pr//},\ E_{otr\bot },\ E_{otr//}$ используют граничные условия:

Подставим в выражения (11) формулы (10), получим:

Из системы уравнений (12),учитывая равенство угла падения и угла отражения (${\alpha }_{pad}=\alpha_{otr}=\alpha $) получим:

Отношения, которые стоят в левых частях выражений (13) называют коэффициентами Френеля. Данные выражения формулами Френеля.

При обычном отражении коэффициенты Френеля вещественные. Это доказывает, что отражение и преломление не сопровождает изменение фазы, исключение -- изменение фазы отраженной волны на $180^\circ$. В том случае, если падающая волна является поляризованной, то отраженная и преломленная волны тоже поляризованы.

Получая формулы Френеля, мы полагали свет монохроматическим, однако, если среда не является диспергирующей и происходит обычное отражение, то данные выражения справедливы и для немонохроматических волн. Надо только под составляющими ($\bot $ и //) понимать соответствующие компоненты напряженностей электрического поля падающей, отраженной и преломленной волн на границе раздела.

Пример 1

Задание: Объясните, почему изображение заходящего солнца при тех же условиях не уступает по яркости самому солнцу.

Решение:

Для объяснения подобного явления используем следующую формулу Френеля:

\[\frac{E_{otr\bot }}{E_{pad\bot }}=-\frac{sin (\alpha -{\alpha }_{pr})}{sin (\alpha +{\alpha }_{pr})};\ \frac{E_{otr//}}{E_{pad//}}=\frac{tg (\alpha -{\alpha }_{pr})}{tg (\alpha +{\alpha }_{pr})}(1.1).\]

В условиях скользящего падения, когда угол падения ($\alpha $) практически равен $90^\circ$ получаем:

\[\frac{E_{otr\bot }}{E_{pad\bot }}=\frac{E_{otr//}}{E_{pad//}}\to -1(1.2).\]

При скользящем падении света коэффициенты Френеля (по модулю) стремятся к единице, то есть отражение получается практически полным. Это объясняет яркие изображения берегов в спокойной воде водоема и яркость заходящего солнца.

Пример 2

Задание: Получите выражение для отражательной способности ($R$), если так называют коэффициент отражения при нормальном падении света на поверхность.

Решение:

Для решения задачи используем формулы Френеля:

\[\frac{E_{otr\bot }}{E_{pad\bot }}=\frac{n_1cos\left(\alpha \right)-n_2cos\left({\alpha }_{pr}\right)}{n_1cos\left(\alpha \right)+n_2cos\left({\alpha }_{pr}\right)},\ \frac{E_{otr//}}{E_{pad//}}=\frac{n_2{cos \left(\alpha \right)\ }-n_1{cos \left({\alpha }_{pr}\right)\ }}{n_2{cos \left(\alpha \right)\ }+n_1{cos \left({\alpha }_{pr}\right)\ }}\left(2.1\right).\]

При нормальном падении света формулы упрощаются и превращаются в выражения:

\[\frac{E_{otr\bot }}{E_{pad\bot }}=-\frac{E_{otr//}}{E_{pad//}}=\frac{n_1-n_2}{n_1+n_2}=\frac{n-1}{n+1}(2.2),\]

где $n=\frac{n_1}{n_2}$

Коэффициентом отражения называют отношение энергии отраженной к энергии падающей. При этом известно, что энергия пропорциональна квадрату амплитуды, следовательно, можно положить, что искомый коэффициент можно найти как:

Ответ: $R={\left(\frac{n-1}{n+1}\right)}^2.$

ФРЕНЕЛЯ ФОРМУЛЫ

ФРЕНЕЛЯ ФОРМУЛЫ

Определяют отношения амплитуды, фазы и поляризации отражённой и преломлённой световых волн, возникающих при прохождении света через границу раздела двух прозрачных диэлектриков, к соответствующим хар-кам падающей . Установлены франц. физиком О. Ж. Френелем в 1823 на основе представлений об упругих поперечных колебаниях эфира. Однако те же самые соотношения - Ф. ф. следуют в результате строгого вывода из эл.-магн. теории света при решении уравнений Максвелла.

Пусть плоская световая волна падает на границу раздела двух сред с показателями преломления n1 и n2 (рис.).

Углы j, j" и j" есть соответственно углы падения, отражения и преломления, причём всегда n1sinj=n2sinj" (закон преломления) и |j|=|j"| (закон отражения). Амплитуду электрич. вектора падающей волны А разложим на составляющую с амплитудой Ap, параллельную плоскости падения, и составляющую с амплитудой As, перпендикулярную плоскости падения. Аналогично разложим амплитуды отражённой волны R на составляющие Rp и Rs, а преломлённой волны D -на Dp и Ds (на рис. показаны только р-составляющие). Ф. ф. для этих амплитуд имеют вид:

Из (1) следует, что при любом значении углов j и j" знаки Ap и Dp, a также знаки As и Ds совпадают. Это означает, что совпадают и фазы, т. е. во всех случаях преломлённая волна сохраняет фазу падающей. Для компонент отражённой волны (Rp и Rs) фазовые соотношения зависят от j, n1 и n2; если j=0, то при n2 >n1 фаза отражённой волны сдвигается на p. В экспериментах обычно измеряют не амплитуду световой волны, а её интенсивность, т. е. переносимый ею поток энергии, пропорц. квадрату амплитуды (см. ПОЙНТИНГА ВЕКТОР). Отношения средних за период потоков энергии в отражённой и преломлённой волнах к ср. потоку энергии в падающей волне наз. коэффициентом отражения r и коэффициентом прохождения d. Из (1) получим Ф. ф., определяющие коэфф. отражения и преломления для s- и р-составляющих падающей волны, учтя, что

При отсутствии поглощения света rs+ds=1 и rp+dp=1 в соответствии с законом сохранения энергии. Если на границу раздела падает , т. е. все направления колебаний электрич. вектора равновероятны, то волны поровну делится между р- и s-колебаниями, полный коэфф. отражения в этом случае: r=1/2(rs+rp). Если j+j"= 90°, то tg(j+j")®?, и rp=0, т. е. в этих условиях , поляризованный так, что его электрич. вектор лежит в плоскости падения, совсем не отражается от поверхности раздела. При падении естеств. света под таким углом отражённый свет будет полностью поляризован. Угол падения, при к-ром это происходит, наз. углом полной поляризации или углом Брюстера (см. БРЮСТЕРА ЗАКОН), для него справедливо соотношение tgjБ= n2/n1.

При норм. падении света на границу раздела двух сред (j=0) Ф. ф. для амплитуд отражённой и преломлённой волн могут быть приведены к виду

Из (4) следует, что на границе раздела тем больше, чем больше абс. величина разности n2-n1; коэфф, r и А не зависят от того, с какой стороны границы раздела приходит падающая световая волна.

Условие применимости Ф. ф.- независимость показателя преломления среды от амплитуды вектора электрич. напряжённости световой волны. Это условие, тривиальное в классич. (линейной) оптике, не выполняется для световых потоков большой мощности, напр. излучаемых лазерами. В таких случаях Ф. ф. не дают удовлетворит. описания наблюдаемых явлений и необходимо использовать методы и понятия нелинейной оптики.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ФРЕНЕЛЯ ФОРМУЛЫ

Определяют отношения амплитуды, фазы и состояния поляризации отражённой и преломлённой световых волн, возникающих при прохождении света через границу раздела двух прозрачных диэлектриков, к соответствующим характеристикам падающей волны. Установлены О. Ж. Френелем в 1823 на основе представлений об упругих поперечных колебаниях эфира. Однако те же самые соотношения - Ф. ф.- следуют в результате строгого вывода из эл.-магн. теории света при решении ур-ний Максвелла.

Пусть плоская световая волна падает на границу раздела двух сред с показателями преломления п 1 . и п 2 (рис.). Углы j, j" и j " есть соответственно углы падения, отражения и преломления, причём всегда n 1 . sinj=n 2 sinj " (закон преломления) и |j|=|j"| (закон отражения). Амплитуду электрического вектора падающей волны А разложим на составляющую с амплитудой А р, параллельную плоскости падения, и составляющую с амплитудой A s , перпендикулярную плоскости падения. Аналогично разложим амплиту ды отражённой волны R на составляющие R p и R s , а преломлённой волны D - на D p и D s (на рис. показаны только р -составляющие). Ф. ф. для этих амплитуд имеют вид


Из (1) следует, что при любом значении углов j и j " знаки А р и D p совпадают. Это означает, что совпадают и фазы, т. е. во всех случаях преломлённая волна сохраняет фазу падающей. Для компонент отражённой волны (R p и R s )фазовые соотношения зависят от j, n 1 и n 2 ; если j=0, то при n 2 >n 1 фаза отражённой волны сдвигается на p.

В экспериментах обычно измеряют не амплитуду световой волны, а её интенсивность, т. е. переносимый ею поток энергии, пропорциональный квадрату амплитуды (см.

Пойнтинга вектор). Отношения средних за период потоков энергии в отражённой и преломлённой волнах к среднему потоку энергии в падающей волне наз. коэф. отражения r и коэф. прохождения d. Из (1) получим Ф. ф., определяющие коэф. отражения и преломления для s- и р -составля-ющих падающей волны, учтя, что


В отсутствие поглощения света между коэффициентами в соответствии с законами сохранения энергии существуют отношения r s +d s =1 и r p +d p =1. Если на границу раздела падает естественный свет, т. е. все направления колебаний электрич. вектора равновероятны, то энергия волны поровну делится между р- и s -колебаниями, полный коэф. отражения в этом случае r =(1/2)(r s +r p ) Если j+j "=90 o , то и r p =0 т. е. в этих условиях свет, поляризованный так, что его электрич. вектор лежит в плоскости падения, совсем не отражается от поверхности раздела. При падении естеств. света под таким углом отражённый свет будет полностью поляризован. Угол падения, при к-ром это происходит, наз. углом полной поляризации или у г л о м Б р ю с т е р а (см. Брюстера закон), для него справедливо соотношение lgj Б =n 2 /n 1 .

При нормальном падении света на границу раздела двух сред (j = 0) Ф. ф. для амплитуд отражённой и преломлённой волн могут быть приведены к виду


Здесь исчезает различие между составляющими s и p , т. к. понятие плоскости падения теряет смысл. В этом случае, в частности, получаем


Из (4) следует, что отражение света на границе раздела тем больше, чем больше абс. величина разности n 2 - n 1 ; коэф. r и d не зависят от того, с какой стороны границы раздела приходит падающая световая волна.

Условие применимости Ф. ф.- независимость показателя преломления среды от амплитуды вектора электрич. напряжённости световой волны. Это условие, тривиальное в классич. (линейной) оптике, не выполняется для световых потоков большой мощности, напр. излучаемых лазерами. В таких случаях Ф. ф. не дают удовлетворит. описания наблюдаемых явлений и необходимо использовать методы и понятия нелинейной оптики.

Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Калитеевский Н. И., Волновая , 2 изд., М., 1978. Л. Н. Капорский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ФРЕНЕЛЯ ФОРМУЛЫ" в других словарях:

    Определяют амплитуды, фазы и поляризации отраженной и преломленной плоских волн, возникающих при падении плоской монохроматической световой волны на неподвижную плоскую границу раздела двух однородных сред. Установлены О.Ж. Френелем в 1823 … Большой Энциклопедический словарь

    Определяют амплитуды, фазы и поляризации отражённой и преломлённой плоских волн, возникающих при падении плоской монохроматической световой волны на неподвижную плоскую границу раздела двух однородных сред. Установлены О. Ж. Френелем в 1823. * *… … Энциклопедический словарь

    Определяют отношения амплитуды, фазы и состояния поляризации отражённой и преломленной световых волн, возникающих при прохождении света через неподвижную границу раздела двух прозрачных диэлектриков, к соответствующим характеристикам… … Большая советская энциклопедия

    Определяют амплитуды, фазы и поляризации отражённой и преломлённой плоских волн, возникающих при падении плоской монохроматич. световой волны на неподвижную плоскую границу раздела двух однородных сред. Установлены О. Ж. Френелем в 1823 … Естествознание. Энциклопедический словарь Википедия

    Огюстен Жан Френель Augustin Jean Fresnel Огюстен … Википедия

    Фр. Augustin Jean Fresnel Огюстен Жан Френель Дата рождения: 10 мая 1788 Место рождения: Брогли (Эр) Дата смерти: 14 июля … Википедия

    Огюстен Жан Френель фр. Augustin Jean Fresnel Огюстен Жан Френель Дата рождения: 10 мая 1788 Место рождения: Брогли (Эр) Дата смерти: 14 июля … Википедия

Формулы Френеля (классическая электродинамика).

Рассмотрим падение плоской гармонической электромагнитной волны на границу раздела двух однородных изотропных непроводящих сред (рис.). Нормаль к поверхности раздела определена вектором , углы между нормалью и направлениями распространения падающей, отражённой и преломлённой волн обозначены символом с подстрочным индексом , или соответственно. Направления распространения описанных плоских волн заданы единичными ортами , и . Вектор в последующих выкладках является радиус-вектором точки наблюдения, а величины и - это фазовые скорости распространения волны в первой (падающая и отражённая волна) и во второй (преломлённая волна) среде. Полагаем, что плоскость поляризации электромагнитной волны является плоскостью колебаний вектора напряжённости электрического поля. Электромагнитную волну с произвольной ориентацией плоскости поляризации представляем в виде суперпозиции двух волн - волны с плоскостью поляризации, параллельной плоскости падения, и волны с плоскостью поляризации, перпендикулярной плоскости падения. Таким образом, получаем соотношение:

Если амплитуды колебаний вектора напряжённости электрического поля падающей волны равны соответственно и для той или иной ориентации плоскости поляризации, то имеют мест соотношения:

. (3)

Эти отношения справедливы для выбранных положительных направлений векторов и , показанных на рис. (ось перпендикулярна плоскости рисунка и направлена «на нас», вектор направлен по оси ).

Для вектора напряжённости магнитного поля в падающей волне воспользуемся полученными ранее результатами:

В соотношении (4) вектор - волновой вектор ( , где - длина волны). В соответствии с результатом (4) запишем координатное представление вектора напряжённости магнитного поля падающей волны:

,

.

Пусть - комплексная амплитуда преломлённой волны, при этом направлена «на нас» вдоль оси , а перпендикулярна вектору и направлена в сторону оси . Описанные ориентации амплитуд условно принимаются положительными. Для составляющих электромагнитного поля в преломлённой волне, также как и в падающей волне, получаем зависимости:

, ,

, , (6)

, .

В выражениях (6) мгновенная фаза гармонических колебаний имеет вид:

. (7)

Продолжим описание взаимодействия плоской волны с границей раздела сред. Пусть - комплексная амплитуда отражённой волны, при этом направлена «на нас» вдоль оси , а перпендикулярна вектору и направлена в сторону оси . Описанные ориентации амплитуд условно принимаются положительными. Для составляющих электромагнитного поля в отражённой волне, также как и в падающей волне, получаем зависимости:

, ,

, , (8)

, .

Для отражённой волны мгновенная фаза гармонических колебаний имеет вид:

. (9)

Выписанные выше выражения для мгновенных значений координатных составляющих электромагнитного поля справедливы в любой точке плоскости падения и в любой момент времени.

В соответствии с общими интегральными теоремами электродинамики на границе раздела двух сред ( - координата радиус-вектора точки наблюдения равна нулю) в любой момент времени должны выполняться условия непрерывности касательных компонент вектора напряжённости электрического поля и касательных компонент напряжённости магнитного поля . Последнее условие справедливо, если на поверхности раздела сред отсутствует поверхностная плотность тока проводимости.

Итак, при z=0 требуем выполнения условий:

, , (10)

, . (11)

Обеспечить выполнение условий (10)-(11) в произвольный момент времени можно только, если потребовать выполнения равенства экспоненциальных множителей в выражениях для компонент векторов и на границе раздела. Приравнивая друг другу выражения и при z=0 , убеждаемся, что угол падения равен углу отражения: . Приравнивая друг другу выражения и при z=0 , убеждаемся, что справедлив закон синусов Снеллиуса: синус угла падения относится к синусу угла преломления как фазовая скорость падающей волны к фазовой скорости преломлённой волны (или как показатель преломления второй среды относится к показателю преломления первой среды). Ранее описанный приём был использован безотносительно к природе плоской волны (раздел). Ниже будем пользоваться установленными результатами.

Четыре уравнения (10)-(11) распадаются на две независимые системы:

(12)

(13)

Факт расщепления условий сопряжения электромагнитного поля на границе раздела сред на две независимые системы уравнений служит обоснованием гипотезы Френеля о возможности рассматривать по отдельности явления отражения и преломления световых волн, колебания в которых параллельны или перпендикулярны плоскости падения волны.

Уравнения (12)-(13) записаны с использованием приближения , при этом , . Осталось только решить системы уравнений (12) и (13). После несложных выкладок с использованием известных соотношений между тригонометрическими функциями получаем результаты:

(14)

(15)

Для удобства практических расчётов приведём решения систем уравнений (12)-(13) с использованием понятия показатель преломления:

(16)

(17) Соотношения (14) и (15) позволяют получить соответствующие выражения и для компонент напряжённости магнитного поля, при желании читатель имеет возможность эти выкладки проделать самостоятельно.

Соотношения (14)-(15) полностью решают рассматриваемую проблему. Они получены с использованием условий непрерывности касательных составляющих векторов напряжённости электрического и магнитного полей на границе раздела двух сред (10)-(11). Но из интегральных теорем классической электродинамики следуют определённые условия, которым должны удовлетворять нормальные к границе раздела составляющие тех же векторных полей:

В условии (18) величина - это поверхностная плотность свободных электрических зарядов. Если в уравнение (18) подставить полученные выше решения и воспользоваться приближением исчезающее малого отличия магнитной проницаемости сред от единицы,

то получим с учётом второго из уравнений системы (12), которое выше использовалось для получения решения, что на поверхности раздела сред действительно не может быть отличной от нуля поверхностной плотности свободных электрических зарядов. А если в уравнение (19) подставить полученные выше решения, то с той же степень точности получаем второе из уравнений системы (13). Таким образом, можно считать доказанным, что нормальные компоненты векторов напряжённости электрического и магнитного поля

удовлетворяют условиям на границе раздела двух сред. Мы ещё раз имеем возможность убедиться в том, насколько внутренне строго организована электромагнитная волна.

Экспериментальная проверка формул Френеля основана на измерении отношения интенсивности отражённой волны к интенсивности падающей волны. Если падающий свет является естественным, осреднённые значения квадратов амплитуд колебаний и совпадают, при этом справедливо соотношение:

, (20)

где - интенсивность естественного падающего света, - интенсивность отражённого частично поляризованного света. Соотношение (20) многократно экспериментально проверялось, оно хорошо описывает экспериментальные результаты. Ради полноты обсуждения проблемы заметим, что в оптике известны случаи отклонения от формул Френеля, но связаны они не с основами электродинамики, а с тем, что выше рассматривалась идеализированная модель явления, упрощённо описывающая свойства поверхности раздела и, вообще говоря, динамические свойства материальных сред.

Сравнивая выражения (14) и (15) с «формулами Френеля», убеждаемся в их идентичности. Но в рамках классической электродинамики в отличие от теории Френеля не содержится внутренне противоречивых элементов, правда, – следует и об этом не забывать – к такому триумфу физики шли около 40 лет.

Наклонное падение плоской гармонической электромагнитной волны на границу раздела сред диэлектрик-проводник .

Целью настоящего раздела является описание явления отражения-преломления плоской однородной гармонической волны при её наклонном падении на плоскую границу раздела диэлектрической среды и проводящей среды. Необходимость вернуться к этому вопросу после рассмотрения формул Френеля для случая наклонного падения электромагнитной волны на границу раздела двух диэлектрических сред обусловлена некоторыми новыми специфическими закономерностями явления, которые возникают из-за того, что одна из сред является проводящей.

Переменное электромагнитное поле описывается системой уравнений Максвелла в дифференциальной форме, величины диэлектрической и магнитной проницаемостей и удельной электропроводности гипотетической (т.е. модельной) среды считаем независящими от времени и пространственных координат. В непроводящей среде (диэлектрик) выполняется условие .

Решение системы уравнений Максвелла представляем в форме плоских гармонических бегущих волн:

где - текущее время, - круговая частота волны, - период колебаний физической величины, принимающей участие в волновом процессе. Здесь - вектор напряжённости электрического поля, - вектор напряжённости магнитного поля, - вектор электрического смещения, - вектор магнитной индукции, - объёмная плотность сторонних электрических зарядов. Предполагаем, как и прежде, что круговая частота является вещественной постоянной скалярной величиной, а вектор - радиус-вектором точки наблюдения. Волновой вектор ниже рассматриваем как вектор с комплексными компонентами:

где отличные друг от друга по величине и направлению векторы и имеют вещественные компоненты.

Векторные величины в соотношении (1) будем считать постоянными векторными величинами (амплитудами плоских гармонических волн). Результаты вычисления дивергенции и ротора векторных величин (1) были не один раз описаны в предыдущих разделах. Таким образом, система уравнений переменного гармонического электромагнитного поля, записанная для векторов напряжённости электрического и магнитного полей, формально приобретает «алгебраический» вид.

Формулы Френеля

Перпендикулярная поляризация. В этом случае вектор перпендикулярен плоскости падения и параллелен границе раздела, а плоскость поляризации ЭМВ перпендикулярна плоскости распространения.

После преобразований, подробно рассмотренных в , получаем формулы О. Френеля для перпендикулярно поляризованных ЭМВ :

; . (9.5)

Для немагнитных сред () (9.5) упрощается :

; . (9.6)

Параллельная поляризация. В этом случае вектор лежит в плоскости распространения, а вектор перпендикулярен ей и параллелен границе раздела, т. е. плоскость поляризации ЭМВ параллельна плоскости ее падения.

После преобразований, подробно рассмотренных в , получаем формулы Френеля для параллельной поляризации :

; . (9.7)

Для немагнитных сред () формулы (9.7) упрощаются :

; . (9.8)

Падающую ЭМВ раскладывают на две составляющие, перпендикулярную и параллельную плоскости падения, и находят составляющие отраженной и преломленной волн. Соотношения между этими составляющими ЭМП определяют характер поляризации ЭМВ. В общем случае поляризация падающей, отраженной и преломленной ЭМВ может оказаться различной.

Из выражений (9.5) и (9.7) можно получить формулы для ЭМВ, падающей на границу раздела сред нормально , положив :

; . (9.9)

Из выражения (9.9) следует, что при нормальном падении ЭМВ на границу раздела отраженная волна будет отсутствовать (Г 0 = 0 ) только в том случае, если волновые сопротивления сред равны (условие согласования сред).

На рис. 9.2 приведены графики зависимостей коэффициента отражения ЭМВ обеих поляризаций от угла падения при различных соотношениях между диэлектрическими проницаемостями сред .

На рис. 9.3 приведены аналогичные графики Т (j). Следует отметить, что коэффициент преломления Т , называемый в литературе также коэффициентом прохождения во вторую среду из первой, не является энергетическимкоэффициентом прохождения . Например, при Z в2 > Z в1 Т будет всегда больше единицы.

Векторы Пойнтинга в разных средах связаны с разными площадями поперечных сечений лучей. Если вектор Пойнтинга наклонно падающей ЭМВ привязать к определенной площади (например, круг), то на границе раздела эта площадь изменится (круг растянется в эллипс). Во второй среде форма сохранится, но сама площадь также несколько изменится.

Явление полного отражения. В случае, когда ЭМВ проходит из оптически более плотной среды в менее плотную (), воз­ни­кает явление полного отражения (рис. 9.4).

Угол преломления y будет вещественным числом при условии:

. (9.10)

В этом случае вещественны также Г и Т в формулах Френеля.

Неравенство (9.10) нарушается, если угол падения j превышает некоторое значение j кр , называемое критическим углом :

. (9.11)

Если угол падения больше критического , то угол y не может быть вещественным, поскольку . В этом случае отраженная волна уносит всю энергию , принесенную падающей.

Явление полного внутреннего отражения используется в линиях передачи нулевой связности (световоды и т. п. – см. темы 15, 18).

Явление полного прохождения. Для ЭМВ с параллельной поляризацией существует угол падения, именуемый углом Д. Брюстера , при котором отраженная волна отсутствует , а значит, ЭМВ полностью переходит во вторую среду. Для немагнитных диэлектриков () с малыми потерями, согласно выражениям (9.8), при , поскольку .

По закону Снеллиуса (9.3) находим .

Откуда следует

. (9.12)

Для ЭМВ с перпендикулярной поляризацией аналогичного эффекта не существует , а значит, всегда больше нуля.

Угол Брюстера называют также углом полной поляризации .

Если ЭМВ с произвольной поляризацией направлена на диэлектрическую пластину под углом , отраженный луч имеет только перпендикулярную поляризацию , так как параллельно поляризованная компонента полностью проходит через пластину.

На рис. 9.5 приведены ½Г(j) ½ при различных значениях tgd второй среды при отсутствии потерь в первой.

Как видно из графиков, явление полного прохождения наблюдается только при отсутствии потерь проводимости. Если tgd > 0, то при параллельной поляризации график ½Г(j) ½ будет иметь минимум, но нулевого значения не достигнет.

Если подбирать e 2 так, чтобы модуль комплексной e 2 оставался неизменным (), то минимум ½Г(j) ½ будет достигаться при угле падения, равном углу Брюстера.

В случае перпендикулярной поляризации принципиальных изменений в поведении графиков на рис. 9.5 не происходит. Модуль Г(j) с ростом угла падения монотонно возрастает от Г 0 до единицы, а фаза Г(j) практически не отличается от 180° .

Диэлектрические пластины и шайбы, служащие для герметизации и крепления проводников в различных линиях связи и устройствах СВЧ, часто ставят под углом Брюстера. В этом случае на определенной частоте они полностью прозрачны для проходящих волн. Аналогичным образом поступают, если необходимо обеспечить минимальный уровень отраженной волны при падении ЭМВ из воздуха на вещество с Z в , отличающимся от Z 0 воздуха.

Стоячая волна. КСВ. КБВ. При нормальном падении ЭМВ на границу раздела сред в первой среде складываются падающая и отраженная волны, имеющие противоположные направления распространения.

Суперпозиция ЭМВ в первой среде с учетом формул (9.6) определяется так :

С учетом (9.4) выражения (9.13) преобразуем так:

Выражение в квадратных скобках можно назвать множителем стоячей волны , так как эта величина показывает периодически изменяющуюся вдоль координаты х «волнистую структуру» ЭМП (рис. 9.6).

При отсутствии потерь в среде:

. (9.15)

При монотонном изменении х второе слагаемое (9.15) вращается вокруг «1» с удвоенной (по сравнению с падающей волной) частотой. Максимальное значение составляет , а минимальное . Расстояние между соседними экстремумами стоячей волны составляет p/k 1 = l 1 /2 .

Если среды согласованы, то , и в этом случае отраженная ЭМВ отсутствует. Если вторая среда – идеальный проводник, то , и в этом случае будет отсутствовать прошедшая ЭМВ, а в первой среде будет только стоячая волна с удвоенной (относительно падающей ЭМВ) амплитудой.

Из формул (9.13) и (9.14) получаем

, . (9.16)

На рис. 9.7 показана структура ЭМП стоячей волны. Из рис. 9.7 и выражения (9.16) сле­дует, что магнитная и электрическая составляющие имеют фазовый сдвиг на четверть длины волны (± 90°). Среднее значение вектора Пойнтинга в любой точке стоячей волны равно нулю, и передачи энергии нет.



Если перейти от комплексных амплитуд к мгновенным значениям, получим:

За период 2π/w 1 получаются распределения максимальных и минимальных значений, показанные на рис. 9.8, которые соответствуют удвоенной частоте пространственного распределения.

При экспериментальном исследовании пространственной структуры стоячей волны с помощью измерительной линии на выходе детекторной секции получится зависимость вида (рис. 9.9).

1. Сформулируйте законы Снеллиуса.

2. Являются ли законы отражения и преломления плоских волн на границе раздела сред фундаментальными законами природы?

3. Дайте определение коэффициентам отражения и прохождения. Какова область значений этих величин?

4. Каково поведение ЭМВ параллельной поляризации на границе раздела?

5. Охарактеризуйте поведение ЭМВ перпендикулярной поляризации на границе раздела сред.

6. Укажите условие согласования сред.

7. Назовите условия полного прохождения.

8. Назовите условия полного отражения.

9. Есть ли связь между явлением полного прохождения и эффектом полной поляризации?

10. При критическом угле падения исчезает прошедшая волна. Что наблюдается, если угол падения больше критического?

11. Как изменяются условия прохождения ЭМВ через границу раздела в средах с потерями?

12. Возможно ли полное отражение ЭМВ от границы раздела диэлектриков с потерями?

13. Дайте определение стоячей волне. Объясните особенности ее ЭМП.

14. Почему стоячая ЭМВ не переносит энергию, хотя векторы ЭМП и существуют?

15. Дайте определение и укажите область значений КСВ и КБВ.

16. Можно ли получить стоячую волну из бегущих волн?

17. На границу раздела сред без потерь под углом Брюстера падает ЭМВ параллельной поляризации. Найдите соотношения между модулями векторов Пойнтинга в обеих средах и объясните полученный результат с точки зрения закона сохранения энергии.

Фо́рмулы Френе́ля определяют амплитуды и интенсивности преломлённой и отражённой электромагнитной волны при прохождении через плоскую границу раздела двух сред с разными показателями преломления . Названы в честь Огюста Френеля , французского физика, который их вывел. Отражение света, описываемое формулами Френеля, называется френелевским отражением .

Формулы Френеля справедливы в том случае, когда граница раздела двух сред гладкая, среды изотропны, угол отражения равняется углу падения, а угол преломления определяется законом Снеллиуса . В случае неровной поверхности, особенно когда характерные размеры неровностей одного порядка с длиной волны , большое значение имеет диффузное отражение света на поверхности.

При падении на плоскую границу различают две поляризации света. s -Поляризация - это поляризация света, для которой напряжённость электрического поля электромагнитной волны перпендикулярна плоскости падения (т.е. плоскости, в которой лежат и падающий, и отражённый луч). p

Формулы Френеля для s -поляризации и p -поляризации различаются. Поскольку свет с разными поляризациями по-разному отражается от поверхности, то отражённый свет всегда частично поляризован, даже если падающий свет неполяризован. Угол падения, при котором отражённый луч полностью поляризован, называется углом Брюстера ; он зависит от отношения показателей преломления сред, образующих границу раздела.

s -Поляризация

Углы падения и преломления для μ = 1 {\displaystyle \mu =1} связаны между собой законом Снеллиуса

sin ⁡ α sin ⁡ β = n 2 n 1 . {\displaystyle {\frac {\sin \alpha }{\sin \beta }}={\frac {n_{2}}{n_{1}}}.}

Отношение n 21 = n 2 n 1 {\displaystyle n_{21}={\cfrac {n_{2}}{n_{1}}}} называется относительным показателем преломления двух сред.

R s = | Q | 2 | P | 2 = sin 2 ⁡ (α − β) sin 2 ⁡ (α + β) . {\displaystyle R_{s}={\frac {|Q|^{2}}{|P|^{2}}}={\frac {\sin ^{2}(\alpha -\beta)}{\sin ^{2}(\alpha +\beta)}}.} T s = 1 − R s . {\displaystyle T_{s}=1-R_{s}.}

Обратите внимание, коэффициент пропускания не равен | S | 2 | P | 2 {\displaystyle {\frac {|S|^{2}}{|P|^{2}}}} , так как волны одинаковой амплитуды в разных средах несут разную энергию.

p -Поляризация

p -Поляризация - поляризация света, для которой вектор напряжённости электрического поля лежит в плоскости падения.

{ S = 2 μ 1 ε 1 μ 2 ε 2 ⋅ sin ⁡ 2 α μ 1 μ 2 sin ⁡ 2 α + sin ⁡ 2 β P ⇔ 2 cos ⁡ α sin ⁡ β sin ⁡ (α + β) cos ⁡ (α − β) P , Q = μ 1 μ 2 sin ⁡ 2 α − sin ⁡ 2 β μ 1 μ 2 sin ⁡ 2 α + sin ⁡ 2 β P ⇔ t g (α − β) t g (α + β) P , {\displaystyle \left\{{\begin{matrix}S=2{\sqrt {\cfrac {\mu _{1}\varepsilon _{1}}{\mu _{2}\varepsilon _{2}}}}\cdot {\cfrac {\sin 2\alpha }{{\cfrac {\mu _{1}}{\mu _{2}}}\sin 2\alpha +\sin 2\beta }}P\;\Leftrightarrow \;{\cfrac {2\cos \alpha \sin \beta }{\sin(\alpha +\beta)\cos(\alpha -\beta)}}P,\\\;\\Q={\cfrac {{\cfrac {\mu _{1}}{\mu _{2}}}\sin 2\alpha -\sin 2\beta }{{\cfrac {\mu _{1}}{\mu _{2}}}\sin 2\alpha +\sin 2\beta }}P\;\Leftrightarrow \;{\cfrac {\mathrm {tg\,} (\alpha -\beta)}{\mathrm {tg\,} (\alpha +\beta)}}P,\end{matrix}}\right.}

Обозначения сохраняются с предыдущего раздела; выражения после стрелок вновь соответствуют случаю μ 1 = μ 2 {\displaystyle \mu _{1}=\mu _{2}}


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав