26.09.2019

Исходные вещества активированный комплекс продукты реакции


В современной науке различают химические и ядерные реакции, протекающие в результате взаимодействия исходных веществ, которые принято называть реагентами. В результате образуются другие химические вещества, которые называются продуктами. Все взаимодействия происходят при определенных условиях (температура, излучение, присутствие катализаторов и прочее). Ядра атомов реагентов химических реакций не меняются. В ядерных превращениях образуются новые ядра и частицы. Существует несколько различных признаков, по которым определяют типы химических реакций.

За основу классификации можно взять число исходных и образующихся веществ. В этом случае все типы химических реакций делятся на пять групп:

  1. Разложения (несколько новых получается из одного вещества), например, разложение при нагревании на хлористый калий и кислород: KCLO3 → 2KCL + 3O2.
  2. Соединения (два или несколько соединений образуют одно новое), взаимодействуя с водой, окись кальция превращается в гидроокись кальция: H2O + CaO → Ca(OH)2;
  3. Замещения (число продуктов равно числу исходных веществ, в которых замещена одна составляющая часть на другую), железо в сульфате меди, замещая медь, образует сульфат двухвалентного железа: Fe + CuSO4 → FeSO4 +Cu.
  4. Двойного обмена (молекулы двух веществ обмениваются оставляющими их частями), металлы в и обмениваются анионами, образуя выпадающий в осадок йодид серебра и азотнокислый кадий: KI + AgNO3 → AgI↓ + KNO3.
  5. Полиморфного превращения (происходит переход вещества из одной кристаллической формы в другую), йодид цвета при нагревании переходит в йодид ртути желтого цвета: HgI2 (красный) ↔ HgI2 (желтый).

Если химические превращения рассматривать по признаку изменения в реагирующих веществах степени окисления элементов, то тогда типы химических реакций могут делиться на группы:

  1. С изменением степени окисления — реакции окислительно-восстановительные (ОВР). В качестве примера можно рассмотреть взаимодействие железа с соляной кислотой: Fe + HCL → FeCl2 + H2, в результате степень окисления железа (восстановитель, отдающий электроны) изменилась с 0 до -2, а водорода (окислитель, принимающий электроны) с +1 до 0.
  2. Без изменения степени окисления (т. е. не ОВР). Например, реакции кислотно-щелочного взаимодействия бромистого водорода с гидроокисью натрия: HBr + NaOH → NaBr + H2O, в результате таких реакций образуются соль и вода, а степени окисления химических элементов, входящих в исходные вещества, не меняются.

Если рассматривать и скорость протекания в прямом и обратном направлении, то все типы химических реакций могут делиться также на две группы:

  1. Обратимые — те, что одновременно протекают в двух направлениях. Большинство реакций являются обратимыми. В качестве примера можно привести растворение в воде двуокиси углерода с образованием нестойкой угольной кислоты, которая разлагается на исходные вещества: H2O + CO2 ↔ H2CO3.
  2. Необратимые - протекают только в прямом направлении, после полного расходования одного из исходных веществ завершаются, после чего присутствуют только продукты и исходное вещество, взятое в избытке. Обычно один из продуктов является или выпавшим в осадок нерастворимым веществом или выделившимся газом. Например, при взаимодействии серной кислоты и хлористого бария: H2SO4 + BaCl2 + → BaSO4↓ + 2HCl в осадок выпадает нерастворимый

Типы химических реакций в органической химии можно разделить на четыре группы:

  1. Замещение (происходит замена одних атомов или групп атомов на другие), например, при взаимодействии хлорэтана с гидроокисью натрия образуется этанол и хлорид натрия: C2H5Cl + NaOH → C2H5OH + NaCl, то есть атом хлора замещается на атом водорода.
  2. Присоединение (две молекулы реагируют и образовывают одну), например, бром присоединяется в месте разрыва двойной связи в молекуле этилена: Br2 + CH2=CH2 → BrCH2—CH2Br.
  3. Отщепление (молекула разлагается на две и более молекулы), например, при определенных условиях этанол разлагается на этилен и воду: C2H5OH → CH2=CH2 + H2O.
  4. Перегруппировка (изомеризация, когда одна молекула превращается в другую, но качественный и количественный состав атомов в ней не меняется), например, 3-хлорутен-1 (C4H7CL) превращается в 1 хлорбутен-2 (C4H7CL). Здесь атом хлора перешел от третьего углеродного атома в углеводородной цепочке к первому, а двойная связь соединяла первый и второй атомы углерода, а затем стала соединять второй и третьи атомы.

Известны и другие виды химических реакций:

  1. По протекающие с поглощением (эндотермические) или выделением тепла (экзотермические).
  2. По типу взаимодействующих реагентов или образующихся продуктов. Взаимодействие с водой — гидролиз, с водородом — гидрирование, с кислородом — окисление или горение. Отщепление воды — дегидратация, водорода — дегидрирование и так далее.
  3. По условиям взаимодействия: в присутствии катализаторов (каталитические), под действием низкой или высокой температуры, при изменении давления, на свету и прочее.
  4. По механизму протекания реакции: ионные, радикально-цепные или цепные реакции.

2. Исходные вещества и методы экспериментов

2.1. Исходные вещества и их анализ

Фосфор, фтор и литий вводили в виде дигидрофосфата аммония, высушенного при 100 °С, фторида и карбоната лития, высушенных при 200 °С. Реактивный оксид никеля (серый, нестехиометрический) прокаливали при 900 °C для превращения в зеленый стехиометрический NiO. Реактивный оксид кобальта (+2) использовали в непрокаленном виде (рентгенофазовым анализом проверено, что это действительно CoO, а не Co 3 O 4). Для введения переходных металлов испытаны и другие реагенты: карбонаты кобальта и марганца, ацетат никеля, а также оксалаты марганца и железа (+2), осажденные из водных растворов. Для проведения данной части экспериментов брали растворимые соли: сульфат железа (+2) и хлорид марганца (+2), растворяли их в горячей дистиллированной воде и приливали к ним горячий раствор оксалата аммония. После охлаждения осадки отфильтровывали на воронке Бюхнера, промывали дистиллированной водой до удаления сульфат- или хлорид-ионов и высушивали при комнатной температуре несколько дней.

Нет уверенности в том, что эти карбонаты, оксалаты и ацетат точно соответствуют идеальным формулам: при хранении возможны потеря или приобретение воды, гидролиз, окисление. Поэтому потребовалось провести их анализ. Для этого по три параллельных пробы каждого из исходных веществ прокаливали до постоянной массы и взвешивали в виде оксидов. Температуру прокаливания выбирали на основе литературных данных о стабильности весовых форм: для получения Fe 2 O 3 , NiO – 900 °С, для получения Co 3 O 4 и Mn 2 O 3 - 750 °С .

2.2. Проведение синтезов

При нагревании фторида лития с дигидрофосфатом аммония возможно улетучивание фтороводорода. Поэтому проведение синтеза в одну стадию вряд ли возможно. Сначала нужно получить LiMPO 4 , и лишь после полного удаления воды можно добавлять фторид лития.

Таким образом, можно выделить две стадии.

(1) 2NH 4 H 2 PO 4 +Li 2 CO 3 + 2MO ® 2 LiMPO 4 + 2NH 3 + CO 2 + 2H 2 O.

Здесь MO – это либо оксид (NiO, CoO), либо соединение, разлагающееся до оксида.

(2) LiMPO 4 + LiF ® Li 2 MPO 4 F

Навески веществ смешивали и растирали в яшмовой ступке до полной однородной массы, затем прессовали таблетки, выдерживали при температуре 150-170 °C 2 часа для удаления большей части летучих компонентов (если сразу нагреть до более высоких температур, то происходит оплавление и однородность таблетки нарушается). Затем температуру постепенно повышали, периодически перетирая смесь, до получения практически чистых LiMPO 4 . Обжиги проводили либо в муфельной печи, либо в инертной атмосфере в трубчатой печи.

Ввиду отсутствия инертных газов в баллонах, пришлось получать азот нагреванием водного раствора хлорида аммония и нитрита бария. Колба, в которой происходила основная реакция по получению азота (экзотермическая реакция, небольшое нагревание), соединялась с двумя промывалками с сернокислым раствором бихромата калия для улавливания возможных примесей аммиака и оксида азота, далее шла накаливаемая трубка с пористыми медными гранулами для очистки от кислорода и оксидов азота, потом с силикагелем для грубой осушки и две промывалки с концентрированной серной кислотой для более полного улавливания водяных паров. Эти промывалки соединялись с трубкой, в которой находились смеси веществ в спрессованном виде в никелевых лодочках. Вначале через установку пропускали трехкратный объем азота для удаления воздуха и лишь потом начинали нагревание. После завершения обжига образцы охлаждали в токе азота, дабы не допустить окисления воздухом.

Продукты проверяли рентгенофазовым анализом и переходили ко второй стадии экспериментов, для этого полученные таблетки перетирали с рассчитанной навеской фторида лития и, спрессовав, продолжали обжиг либо в муфельной печи, либо в инертной атмосфере в трубчатой печи по уже рассмотренной технологии. Чтобы обеспечить более полное связывание фосфата, фторид лития вводили в пятипроцентном избытке. Этот избыток составляет лишь 0,7 масс. % смеси и менее существенен, чем примесь не прореагировавшего фосфата.

2.3. Рентгенография

Рентгенофазовый анализ производился на дифрактометре ДРОН – 2.0 в медном Кa - излучении. Данное излучение не очень подходит для соединений, в которых присутствуют железо и особенно кобальт, так как оно сильно поглощается атомами этих элементов и возбуждает их собственное рентгеновское излучение. В результате дифракционные максимумы ослабляются, и резко возрастает фон. Поэтому снижается чувствительность фазового анализа, уменьшается число наблюдаемых отражений и ухудшается точность их измерения из-за сильных флуктуаций интенсивности. Чтобы преодолеть эти затруднения, следовало бы использовать рентгеновскую трубку с другим анодом, например, кобальтовым (но тогда бы возникли те же проблемы с соединениями марганца) или установить монохроматор на дифрагированном пучке. Но у нас не было такой возможности, поэтому для уменьшения статистических ошибок съемку кобальтового соединения приходилось повторять по несколько раз.

При фазовом анализе применялась база порошковых дифракционных данных PDF-2.

Работа добавлена на сайт сайт: 2015-07-05

">24. "> ">Признаки обратимых и необратимых реакций. Критерии равновесия. Константа равновесия. Принцип Ле-Шателье.

;color:#000000;background:#ffffff">1. Реакцию называют ;color:#000000;background:#ffffff">обратимой ;color:#000000;background:#ffffff">, если её направление зависит от концентраций веществ — участников реакции. Например N ;vertical-align:sub;color:#000000;background:#ffffff">2 ;color:#000000;background:#ffffff"> + 3H ;vertical-align:sub;color:#000000;background:#ffffff">2 ;color:#000000;background:#ffffff"> = 2NH ;vertical-align:sub;color:#000000;background:#ffffff">3 ;color:#000000;background:#ffffff"> при малой концентрации аммиака в газовой смеси и больших концентрациях азота и водорода происходит образование аммиака; напротив, при большой концентрации аммиака он разлагается, реакция идёт в обратном направлении. По завершении обратимой реакции, т. е. при достижении равновесия химического, система содержит как исходные вещества, так и продукты реакции.

;color:#000000;background:#ffffff">Необратимые реакции ;color:#000000;background:#ffffff"> — реакции, при которых взятые вещества нацело превращаются в продукты реакции, не реагирующие между собой при данных условиях, например ;background:#ffffff">, ;color:#000000;background:#ffffff">горение ;background:#ffffff"> ;color:#000000;background:#ffffff">углеводородов ;background:#ffffff">, ;color:#000000;background:#ffffff">образование ;color:#000000;background:#ffffff">малодиссоциирующих ;background:#ffffff"> ;color:#000000;background:#ffffff">соединений, выпадение осадка, образование газообразных веществ.

">Химическое равновесие "> - состояние системы, в котором скорость прямой реакции (" xml:lang="en-US" lang="en-US">V ;vertical-align:sub">1 ">) равна скорости обратной реакции (" xml:lang="en-US" lang="en-US">V ;vertical-align:sub">2 ">). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

">Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (" xml:lang="en-US" lang="en-US">K ;vertical-align:sub">1 ">) и обратной (" xml:lang="en-US" lang="en-US">K ;vertical-align:sub">2 ">) реакций.

" xml:lang="en-US" lang="en-US">K = K ;vertical-align:sub" xml:lang="en-US" lang="en-US">1/ " xml:lang="en-US" lang="en-US">K ;vertical-align:sub" xml:lang="en-US" lang="en-US">2 " xml:lang="en-US" lang="en-US">= ([C] ;vertical-align:super" xml:lang="en-US" lang="en-US">c " xml:lang="en-US" lang="en-US"> [D] ;vertical-align:super" xml:lang="en-US" lang="en-US">d " xml:lang="en-US" lang="en-US">) / ([A] ;vertical-align:super" xml:lang="en-US" lang="en-US">a " xml:lang="en-US" lang="en-US"> [B] ;vertical-align:super" xml:lang="en-US" lang="en-US">b " xml:lang="en-US" lang="en-US">)

"> Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции.

">Смещение химического равновесия.

">1. Иземенение концентрации реаг. В-в

  1. ">Увеличение конц исх в-в сдвигает вправо
  2. ">Увеличение продуктов сместит равновесие влево

">2. Давление (только для газов)

  1. ">Увеличение давл. Смещает равновесие в сторону в-в занимающих меньший объём.
  2. ">Уменьшение давл смещает равновесие в сторону в-в занимающих больший объём

">3. Температура.

  1. ">Для экзотермических р-ий повыш. Т смещает влево
  2. ">Для эндотермических повышение Т смещает вправо.
  3. ">Катализаторы не оказывают влияние на хим. Равновесие, а лишь ускоряет его наступление

">Принцип Ле-Шателье ">если на систему находящуюся в состоянии динамического равновесия, оказать какое-либо воздействие, то преимущественно получается та реакция которая препятствует этому воздействию

" xml:lang="en-US" lang="en-US">N2+O2↔NO+ ∆H

" xml:lang="en-US" lang="en-US">→ t◦→

" xml:lang="en-US" lang="en-US">↓← ↓ t◦←

" xml:lang="en-US" lang="en-US"> ← p-

Г лава 6

Химическая кинетика. Химическое равновесие.

6.1.Химическая кинетика .

Химическая кинетика - раздел химии, изучающий скорости и механизмы химических процессов, а также их зависимость от различных факторов.

Изучение кинетики химических реакций позволяет как определять механизмы химических процессов, так и управлять химическими процессами при их практической реализации.

Любой химический процесс представляет собой превращение реагентов в продукты реакции:

реагенты→ переходное состояние→ продукты реакции.

Реагенты (исходные вещества) – вещества, вступающие в процесс химического взаимодействия.

Продукты реакции – вещества, образующиеся в конце процесса химического превращения. В обратимых процессах продукты прямой реакции являются реагентами обратной реакции.

Необратимые реакции – реакции, протекающие при данных условиях практически в одном направлении (обозначают знаком →).

Например:

CaCO 3 → CaO + CO 2

Обратимые реакции – реакции, протекающие одновременно в двух противоположных направлениях (обозначают знаком).

Переходное состояние (активированный комплекс) – это состояние химической системы, являющееся промежуточным между исходными веществами (реагентами) и продуктами реакции. В этом состоянии происходит разрыв старых химических связей и образования новых химических связей. Далее активированный комплекс превращается в продукты реакции.

Большинство химических реакций являются сложными и состоят из нескольких стадий, называемых элементарными реакциями .

Элементарная реакция – единичный акт образования или разрыва химической связи. Совокупность элементарных реакций, из которых складывается химическая реакция, определяет механизм химической реакции.

В уравнении химической реакции обычно указывается начальное состояние системы (исходные вещества) и её конечное состояние (продукты реакции). В то же время фактический механизм химической реакции может быть достаточно сложным и включать в себя целый ряд элементарных реакций. К сложным химическим реакциям относятся обратимые, параллельные, последовательные и другие многостадийные реакции (цепные реакции , сопряженные реакции и пр.).

Если скорости различных стадий химической реакции существенно различаются, то скорость сложной реакции в целом определяется скоростью самой медленной ее стадии. Такую стадию (элементарную реакцию) называют лимитирующей стадией .

В зависимости от фазового состояния реагирующих веществ, различают два типа химических реакций: гомогенные и гетерогенные .

Фазой называется часть системы, отличающаяся по своим физическим и химическим свойствам от других частей системы и отделенная от них поверхностью раздела. Системы, состоящие из одной фазы, называются гомогенными системами , из нескольких фаз – гетерогенными . Примером гомогенной системы может быть воздух, представляющий собой смесь веществ (азот, кислород и др.), находящихся в одинаковой газовой фазе. Суспензия мела (твердого вещества) в воде (жидкость) является примером гетерогенной системы, состоящей из двух фаз.

Соответственно, реакции, в которых взаимодействующие вещества находятся в одной фазе, называются гомогенными реакциями . Взаимодействие веществ в таких реакциях происходит по всему объёму реакционного пространства.

К гетерогенным реакциям относят реакции, протекающие на границе раздела фаз. Примером гетерогенной реакции может служить реакция цинка (твердая фаза) с раствором соляной кислоты (жидкая фаза). В гетерогенной системе реакция всегда происходит на поверхности раздела двух фаз, так как только здесь реагирующие вещества, находящиеся в разных фазах, могут сталкиваться между собой.

Химические реакции принято различать по их молекулярности , т.е. по числу молекул, участвующих в каждом элементарном акте взаимодействия . По этому признаку различают реакции мономолекулярные, бимолекулярные и тримолекулярные.

Мономолекулярными называются реакции, в которых элементарный акт представляет собой химическое превращение одной молекулы , например:

Бимолекулярными считаются реакции, элементарный акт в которых осуществляется при столкновении двух молекул, например:

В тримолекулярных реакциях элементарный акт осуществляется при одновременном столкновении трех молекул, например:

Столкновение более чем трех молекул одновременно практически невероятно, поэтому реакции большей молекулярности на практике не встречаются.

Скорости химических реакций могут существенно отличаться. Химические реакции могут протекать крайне медленно, в течение целых геологических периодов, как, например, выветривание горных пород, которое представляет собой превращения алюмосиликатов:

K 2 O · Al 2 O 3 · 6SiO 2 + CO 2 + 2H 2 O → K 2 CO 3 + 4SiO 2 + Al 2 O 3 · 2SiO 2 · 2H 2 O.

ортоклаз – полевой шпат поташ кварц. песок каолинит (глина)

Некоторые реакции протекают практически мгновенно, например, взрыв черного пороха, представляющего собой смесь угля, серы и селитры:

3C + S + 2KNO 3 = N 2 + 3CO 2 + K 2 S.

Скорость химической реакции служит количественной мерой интенсивности ее протекания.

В общем случае под скоростью химической реакции понимают число элементарных актов реакции, происходящих в единицу времени в единице реакционного пространства.

Так как для гомогенных процессов реакционным пространством является объем реакционного сосуда, то

для гомогенных реакций скорость химической реакции определяется количеством вещества, прореагировавшего в единицу времени в единице объема.

Учитывая, что количество вещества, содержащееся в определенном объеме, характеризует концентрацию вещества, то

скорость реакции – это величина, показывающая изменение молярной концентрации одного из веществ в единицу времени.

Если при неизменных объеме и температуре концентрация одного из реагирующих веществ уменьшилась от с 1 до с 2 за промежуток времени от t 1 до t 2 , то, в соответствии с определением, скорость реакции за данный промежуток времени (средняя скорость реакции) равна:

Обычно для гомогенных реакций размерность скорости V [моль/л·с].

Так как для гетерогенных реакций реакционным пространством является поверхность , на которой протекает реакция, то для гетерогенных химических реакций скорость реакции относится к единице площади поверхности, на которой протекает реакция. Соответственно, средняя скорость гетерогенной реакции имеет вид:

где S – площадь поверхности, на которой протекает реакция.

Размерность скорости для гетерогенных реакций – [моль/л·с·м 2 ].

Скорость химической реакции зависит от целого ряда факторов:

природы реагирующих веществ;

концентрации реагирующих веществ;

давления (для газовых систем);

температуры системы;

площади поверхности (для гетерогенных систем);

наличия в системе катализатора и других факторов.

Так как каждое химическое взаимодействие является результатом столкновения частиц, то увеличение концентрации (числа частиц в заданном объеме) приводит к более частым их столкновениям, и как следствие, к увеличению скорости реакции. Зависимость скорости химических реакций от молярных концентраций реагирующих веществ описывается основным законом химической кинетики – законом действующих масс , который был сформулирован в 1865 году Н.Н.Бекетовым и в 1867 году К.М.Гульдбергом и П. Вааге .

Закон действующих масс гласит: скорость элементарной химической реакции при постоянной температуре прямо пропорциональна произведению молярных концентраций реагирующих веществ в степенях, равных их стехиоме-трическим коэффициентам.

Уравнение, выражающее зависимость скорости реакции от концентрации каждого вещества, называют кинетическим уравнением реакции .

Следует отметить, что закон действующих масс в полной мере применим лишь только к простейшим гомогенным реакциям. Если реакция протекает в несколько стадий, то закон справедлив для каждой из стадий, а скорость сложного химического процесса определяется скоростью наиболее медленно протекающей реакции, являющейся лимитирующей стадией всего процесса .

В общем случае, если в элементарную реакцию вступают одновременно т молекул вещества А и n молекул вещества В :

m А + n В = С ,

то уравнение для скорости реакции (кинетическое уравнение) имеет вид:

где k – коэффициент пропорциональности, который называется константой скорости химической реакции; [А А ; [B ] – молярная концентрация вещества B ; m и n – стехиометрические коэффициенты в уравнении реакции.

Чтобы понять физический смысл константы скорости реакции , надо принять в написанных выше уравнениях концентрации реагирующих веществ [А ] = 1 моль/л и [В ] = 1 моль/л (либо приравнять единице их произведение), и тогда:

Отсюда ясно, что константа скорости реакции k численно равна скорости реакции, в которой концентрации реагирующих веществ (или их произведение в кинетических уравнениях) равны единице .

Константа скорости реакции k зависит от природы реагирующих веществ и температуры, но не зависит от значения концентрации реагентов.

Для гетерогенных реакций концентрация твердой фазы в выражение для скорости химической реакции не включается.

Например, в реакции синтеза метана:

Если реакция протекает в газовой фазе, то существенное влияние на ее скорость оказывает изменение давления в системе, так как изменение давления в газовой фазе приводит к пропорциональному изменению концентрации. Так, увеличение давления приводит к пропорциональному росту концентрации, а уменьшение давления, соответственно, снижает концентрацию газообразного реагирующего вещества.

Изменение давления практически не влияет на концентрацию жидких и твердых веществ (конденсированное состояние вещества) и не оказывает влияния на скорость реакций, протекающих в жидкой или твердой фазах.

Химические реакции осуществляется за счет соударения частиц реагирующих веществ. Однако, далеко не всякое столкновение частиц реагентов является эффективным , т.е. ведет к образованию продуктов реакции. Только частицы, обладающие повышенной энергией – активные частицы , способны осуществить акт химической реакции. С повышением температуры увеличивается кинетическая энергия частиц и увеличивается число активных, следовательно, возрастает скорость химических процессов.

Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа: при повышении температуры на каждые 10 0 С скорость химической реакции возрастает в два – четыре раза.

V 1 – скорость реакции при начальной температуре системы t 1 , V 2 – скорость реакции при конечной температуре системы t 2 ,

γ – температурный коэффициент реакции (коэффициент Вант-Гоффа), равный 2÷4.

Знание величины температурного коэффициента γ дает возможность рассчитать изменение скорости реакции при увеличении температуры от Т 1 до Т 2 . В этом случае можно использовать формулу:

Очевидно, что при повышении температуры в арифметической прогрессии скорость реакции возрастает в геометрической прогрессии. Влияние температуры на скорость реакции тем значительнее, чем больше значение температурного коэффициента реакции g.

Следует заметить, что правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния небольших изменений температуры на скорость реакции.

Энергия, необходимая для протекания реакций, может быть обеспечена различными воздействиями (теплота, свет, электрический ток, лазерное излучение, плазма, радиоактивное излучение, высокое давление и т.д.).

Реакции могут подразделяться на тепловые, фотохимические, электрохимические, радиационно-химические и др. При всех этих воздействиях растет доля активных молекул, которые имеют энергию, равную или большую минимально необходимой для данного взаимодействия энергии Е мин .

При столкновении активных молекул вначале образуется так называемый активированный комплекс , внутри которого и происходит перераспределение атомов.

Энергия, необходимая для увеличения средней энергии молекул реагирующих веществ до энергии активированного комплекса, называется энергией активации Еа.

Энергию активации можно рассматривать как некую дополнительную энергию, которую должны приобрести молекулы реагентов, чтобы преодолеть определенный энергетический барьер . Таким образом, Е а ра вна разности между средней энергией реагирующих частиц E исх и энергией активированного комплекса E мин. Энергия активации определяется природой реагентов. Значение Е а колеблется в пределах от 0 до 400 кДж. Если значение Е а превышает 150 кДж, то такие реакции при температурах, близких к стандартной, практически не протекают.

Изменение энергии системы в ходе реакции может быть графически представлено с помощью следующей энергетической диаграммы (рис. 6.1).

Путь реакции

Рис. 6.1. Энергетическая диаграмма экзотермической реакции:

E исх – средняя энергия исходных веществ; E прод – средняя энергия продуктов реакции; E мин – энергия активированного комплекса; E акт – энергия активации; ΔH р – тепловой эффект химической реакции

Из энергетической диаграммы видно, что разность между величинами энергии продуктов реакции и энергии исходных веществ, будет представлять из себя тепловой эффект реакции.

Е прод. – Е исх. = ΔН р.

Согласно уравнению Аррениуса, чем больше значение энергии активации E акт, тем в большей степени константа скорости химической реакции k зависит от температуры:

Е - энергия активации (Дж/моль),

R - универсальная газовая постоянная,

T – температура в К,

А - константа Аррениуса,

e = 2,718 – основание натуральных логарифмов.

Катализаторы - это вещества, которые повышают скорость химической реакции. Они вступают во взаимодействие с реагентами с образованием промежуточного химического соединения и освобождаются в конце реакции. Влияние, оказываемое катализаторами на химические реакции, называется катализом.

Например, смесь порошка алюминия и кристаллического йода при комнатной температуре не обнаруживает заметных признаков взаимодействия, но достаточно капли воды, чтобы вызвать бурную реакцию:

Различают гомогенный катализ (катализатор образует с реагирующими веществами гомогенную систему, например, газовую смесь) и гетерогенный катализ (катализатор и реагирующие вещества находятся в разных фазах и каталитический процесс идет на поверхности раздела фаз).

Для объяснения механизма гомогенного катализа наибольшее распространение получила теория промежуточных соединений (предложена французским исследователем Сабатье и развита в работах русского ученого Н.Д. Зелинского). Согласно этой теории медленно протекающий процесс, например, реакция:

в присутствии катализатора протекает быстро, но в две стадии. В первой стадии процесса образуется промежуточное соединение одного из реагентов с катализатором A… kat .

Первая стадия:

A + kat = A.∙. kat.

Полученное соединение на второй стадии образует с другим реагентом активированный комплекс [A.∙.kat.∙.B ], который превращается в конечный продукт AB с регенерацией катализатора kat .

Вторая стадия:

A.∙.kat + B = = AB + kat.

Промежуточное взаимодействие катализатора с реагентами, направляет процесс на новый путь, характеризующийся более низким энергетическим барьером. Таким образом, механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений.

Примером может служить медленно протекающая реакция:

2SO 2 + O 2 = 2SO 3 медленно .

При промышленном нитрозном способе получения серной кислоты в качестве катализатора используется оксид азота (II), что значительно ускоряет реакцию:

Широко используется гетерогенный катализ в процессах нефтепереработки. Катализаторами служат платина, никель, оксид алюминия и др. Гидрирование растительного масла протекает на никелевом катализаторе (никель на кизельгуре) и т.д.

Примером гетерогенного катализа является окисление SO 2 в SO 3 на катализаторе V 2 O 5 при производстве серной кислоты контактным методом.

Вещества, повышающие активность катализатора называют промоторами (или активаторами). При этом, промоторы могут сами и не обладать каталитическими свойствами.

Каталитические яды - посторонние примеси в реакционной смеси, приводящие к частичной или полной потере активности катализатора. Так, следы фосфора и мышьяка вызывают быструю потерю катализатором V 2 O 5 активности в реакции окисления SO 2 в SO 3 .

Многие важнейшие химические производства, такие как получение серной кислоты, аммиака, азотной кислоты, синтетического каучука, ряда полимеров и др., проводятся в присутствии катализаторов.

Биохимические реакции в растительных и животных организмах ускоряются биохимическими катализаторами ферментами .

Резко замедлить протекание нежелательных химических процессов можно при добавлении в реакционную среду специальных веществ - ингибиторов . Например, для торможения нежелательных процессов коррозионного разрушения металлов широко используются различные ингибиторы коррозии металлов .

6.1.1. Вопросы для самоконтроля знаний теории

по теме « Химическая кинетика»

1. Что изучает химическая кинетика?

2. Что принято понимать под термином « реагенты»?

3. Что принято понимать под термином « продукты реакции»?

4. Как обозначаются в химических реакциях обратимые процессы?

5. Что принято понимать под термином « активированный комплекс»?

6. Что представляет из себя элементарная реакция?

7. Какие реакции считаются сложными?

8. Какую стадию реакций называют лимитирующей стадией?

9. Дайте определение понятию «фаза»?

10. Какие системы считаются гомогенными?

11. Какие системы считаются гетерогенными?

12. Приведите примеры гомогенных систем.

13. Приведите примеры гетерогенных систем.

14. Что считают «молекулярностью» реакции?

15. Что понимают под термином «скорость химической реакции»?

16. Приведите примеры быстрых и медленных реакций.

17. Что понимают под термином «скорость гомогенной химической реакции»?

18. Что понимают под термином «скорость гетерогенной химической реакции»?

19. От каких факторов зависит скорость химической реакции?

20. Сформулируйте основной закон химической кинетики.

21. Что представляет из себя константа скорости химических реакций?

22.От каких факторов зависит константа скорости химических реакций?

23. Концентрации каких веществ не включается в кинетическое уравнение химических реакций?

24. Как зависит скорость химической реакции от давления?

25. Как зависит скорость химической реакции от температуры?

26. Как формулируется «Правило Вант-Гоффа»?

27. Что представляет из себя «температурный коэффициент химической реакции»?

28. Дайте определение понятию «энергия активации».

29. Дайте определение понятию «катализатор химической реакции»?

30. Что представляет из себя гомогенный катализ?

31. Что представляет из себя гетерогенный катализ?

32. Как объясняется механизм действия катализатора при гомогенном катализе?

33. Приведите примеры каталитических реакций.

34. Что такое ферменты?

35. Что такое промоторы?

6.1.2. Примеры решения типовых задач

по теме «Химическая кинетика»

Пример 1 . От площади поверхности соприкосновения реагирующих веществ зависит скорость реакции:

1) серной кислоты с раствором хлорида бария,

2) горения водорода в хлоре,

3) серной кислоты с раствором гидроксида калия,

4) горения железа в кислороде.

От площади поверхности соприкосновения реагирующих веществ зависит скорость гетерогенных реакций. Среди приведенных реакций гетерогенной реакцией, т.е. характеризующейся наличием разных фаз, является реакция горения железа (твердая фаза) в кислороде (газовая фаза).

Ответ. 3.

Пример 2. Как изменится скорость реакции

2Н 2(г) + О 2(Г) = 2Н 2 О (г)

при увеличении концентрации исходных веществ в два раза?

Запишем кинетическое уравнение реакции, устанавливающее зависимость скорости реакции от концентрации реагирующих веществ:

V 1 = k [Н 2 ] 2 · [О 2 ].

Если концентрации исходных веществ увеличить в 2 раза, кинетическое уравнение примет вид:

V 2 = k (2 [Н 2 ]) 2 · 2 [О 2 ] = 8 k [Н 2 ] 2 · [О 2 ], т.е.

При увеличении концентрации исходных веществ в два раза скорость данной реакции возросла в 8 раз.

Ответ. 8.

Пример 3. Как изменится скорость реакции, если общее давление в системе СН 4(Г) + 2О 2(Г) = СО 2(Г) + 2Н 2 О (Г) , уменьшить в 5 раз?

В соответствии с кинетическим уравнением реакции, скорость этой реакции будет определяться:

V 1 = k [СН 4 ] · [О 2 ] 2 .

При уменьшении давления в пять раз концентрация каждого из газообразных веществ уменьшится также в пять раз. Кинетическое уравнение реакции в этих условиях будет следующим:

можно определить, что скорость реакции уменьшилась в 125 раз.

Ответ. 125.

Пример 4. Как изменится скорость реакции, характеризующейся температурным коэффициентом реакции, равным 3, если температура в системе повысилась с 20 до 60°С?

Решение. В соответствии с правилом Вант-Гоффа

При повышении температуры на 40 0 С скорость данной реакции возросла в 81 раз

Ответ. 81.

6.1.3. Вопросы и упражнения для самоподготовки

Скорость химических реакций

1. В зависимости от физического состояния реагирующих веществ химические реакции подразделяют на:

1) экзотермические и эндотермические,

2) обратимые и необратимые,

3) каталитические и некаталитические,

4) гомогенные и гетерогенные.

2. Укажите номер или сумму условных номеров, под которыми приведены гомогенные реакции:

3. Укажите номер или сумму условных номеров, под которыми приведены выражения, с помощью которых можно вычислить скорость гомогенной реакции:

4. Единицей измерения скорости гомогенной реакции может быть:

1) моль/л·с,

3) моль/л·,

4) л/моль·с.

5. Укажите номер или сумму условных номеров, под которыми приведены справедливые выражения. В ходе гомогенной реакции

А + 2B ® 2C + D :

1) концентрации А и В убывают,

2) концентрация С возрастает быстрее, чем концентрация D ,

4) концентрация В убывает быстрее, чем концентрация А ,

8) скорость реакции остается постоянной.

6. Под каким номером показана линия, верно отражающая изменение во времени концентрации образующегося в реакции вещества:

7. Изменение во времени концентрации исходного вещества в реакции, протекающей до конца, верно описывает кривая:

9. Укажите номер или сумму условных номеров, под которыми приведены реакции, скорость которых не зависит от того, по какому веществу ее вычисляют?

10. Укажите номер или сумму условных номеров, под которыми приведены факторы, влияющие на скорость реакции:

1) природа реагирующих веществ,

2) концентрация реагирующих веществ,

4) температура реакционной системы,

8) присутствие катализатора в реакционной системе.

11. Основной закон химической кинетики устанавливает зависимость скорости реакции от:

1) температуры реагирующих веществ,

2) концентрации реагирующих веществ,

3) природы реагирующих веществ,

4) времени протекания реакции.

12. Укажите номер или сумму условных номеров, под которыми приведены верные высказывания. Химическая кинетика:

1) раздел физики,

2) изучает скорость химической реакции,

4) использует закон действующих масс,

8) изучает зависимость скорости реакций от условий их протекания.

13. Я.Х. Вант-Гофф:

1) первый лауреат Нобелевской премии по химии,

2) изучал зависимость скорости реакции от температуры,

4) изучал зависимость скорости реакции от концентрации веществ,

8) сформулировал закон действующих масс.

14. В одинаковых условиях быстрее протекает реакция:

1) Ca + H 2 O ®

3) Mg + H 2 O ®

4) Zn + H 2 O ®

15. Скорость выделения водорода наибольшая в реакции:

1) Zn + HCl (5-процентный р–р) ®

2) Zn + НСl (10-процентный р–р) ®

3) Zn + HCl (15-процентный р–р) ®

4) Zn + HCl (30-процентный р–р) ®

16. Концентрация реагирующего вещества не влияет на скорость реакции, если это вещество в реакцию взято в:

1) твердом состоянии,

2) газообразном состоянии,

3) растворенном состоянии.

17. Вычислите среднюю скорость реакции A + B = C (моль/л×с), если известно, что исходная концентрация А составляла 0,8 моль/л, а через 10 секунд стала 0,6 моль/л.

1) 0,2, 2) 0,01, 3) 0,1, 4) 0,02.

18. На сколько моль/л уменьшились концентрации веществ A и B в реакции A + 2B ® 3C , если известно, что за это же время концентрация С увеличилась на 4,5 моль/л?

DС А DС B

19. Вычислите среднюю скорость реакции 2CO + O 2 ® 2CO 2 (моль/л×с), если известно, что исходная концентрация CO составляла 0,60 моль/л, а через 10 секунд стала 0,15 моль/л. На сколько моль/л изменилась за этот промежуток времени концентрация CO 2 ?

3) 0,045; 0,045,

20. На сколько градусов нужно нагреть систему, чтобы скорость протекающей в ней реакции увеличилась в 2–4 раза?

1) 150, 2) 10, 3) 200, 4) 50.

21. Скорость реакции при 20°С равна 0,2 моль/л×с. Определите скорость реакции при 60°C (моль/л×с), если температурный коэффициент скорости реакции равен 3.

1) 16,2, 2) 32,4, 3) 8,1, 4) 4,05.

22. Эмпирическую зависимость скорости реакции от температуры верно отражает уравнение:

23. Скорость реакции при 20°С равна 0,08 моль/л×с. Вычислите скорость реакции при 0°С (моль/л×с), если температурный коэффициент скорости реакции равен 2.

1) 0,16, 2) 0,04, 3) 0,02, 4) 0,002.

24. Во сколько раз возрастет скорость реакции при повышении температуры на 40°С, если температурный коэффициент скорости реакции равен 3?

1) 64, 2) 243, 3) 81, 4) 27.

25. На сколько градусов следует повысить температуру, чтобы скорость реакции возросла в 64 раза, если температурный коэффициент скорости реакции равен 4?

1) 60, 2) 81, 3) 27, 4) 30.

26. Вычислите температурный коэффициент скорости реакции, если известно, что при повышении температуры на 50 о С скорость реакции возрастает в 32 раза.

1) 3, 2) 2, 3) 4, 4) 2,5.

27. Причиной роста скорости реакции с ростом температуры является увеличение:

1) скорости движения молекул,

2) числа столкновений между молекулами,

3) доли активных молекул,

4) стабильности молекул продуктов реакции.

28. Укажите номер или сумму условных номеров, под которыми приведены реакции, для которых MnO 2 является катализатором:

1) 2KClO 3 ® 2KCl + 3O 2 ,

2) 2Al + 3I 2 ® 2AlI 3 ,

4) 2H 2 O 2 ® 2H 2 O + O 2 ,

8) 2SO 2 + O 2 ® 2SO 3 .

29. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. С помощью каталитических реакций в промышленности получают:

1) соляную кислоту,

2) серную кислоту,

4) аммиак,

8) азотную кислоту.

30. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. Катализатор:

1) участвует в реакции,

2) используется только в твердом состоянии,

4) не расходуется в ходе реакции,

8) в своем составе обязательно содержит атом металла.

31. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. В качестве катализаторов используются:

32. Вещества, уменьшающие активность катализатора, называются:

1) промоторами,

2) регенераторами,

3) ингибиторами,

4) каталитическими ядами.

33. Каталитической не является реакция:

1) (C 6 H 10 O 5) n + n H 2 O ® n C 6 H 12 O 6 ,

целлюлоза

2) 2SO 2 + O 2 ® 2SO 3 ,

3) 3H 2 + N 2 ® 2NH 3 ,

4) NH 3 + HCl ® NH 4 Cl.

34. Под каким номером приведено уравнение гомогенного катализа:

35. Механизм действия катализатора верно отражает высказывание. Катализатор:

1) увеличивая кинетическую энергию исходных частиц, увеличивает число их столкновений,

2) образует с исходными веществами промежуточные соединения, легко превращающиеся в конечные вещества,

3) не взаимодействуя с исходными веществами, направляет реакцию по новому пути,

4) уменьшая кинетическую энергию исходных частиц, увеличивает число их столкновений.

36. Роль промотора в каталитической реакции состоит в том, что он:

1) уменьшает активность катализатора,

2) увеличивает активность катализатора,

3) ведет реакцию в желаемом направлении,

4) защищает катализатор от каталитических ядов.

37. Ферменты:

1) биологические катализаторы,

2) имеют белковую природу,

4) не отличаются специфичностью действия,

8) ускоряют биохимические процессы в живых организмах.

38. Гетерогенной является реакция:

39. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. Чтобы увеличить скорость горения угля: С + O 2 ® СО 2 , необходимо:

1) увеличить концентрацию О 2 ,

2) увеличить концентрацию угля,

4) измельчить уголь,

8) увеличить концентрацию углекислого газа.

40. Если реагирующее вещество А взято в реакцию: А т + Х газ ® в твердом состоянии, то на скорость реакции влияет:

1) концентрация А,

2) площадь поверхности соприкосновения А с Х,

4) молярная масса А,

8) концентрация вещества Х.

41. Размерностью скорости гетерогенной реакции является:

1) моль/л, 2) моль/cм 3 ×с,

3) моль/л×с 4) моль/см 2 ×с.

42. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. Принцип кипящего слоя используют:

1) для увеличения поверхности соприкосновения реагентов,

2) при обжиге колчедана,

4) в ходе каталитического крекинга нефтепродуктов,

8) для регенерации активности катализатора.

43. Наименьшую

1) Na + H 2 O ® 2) Ca + H 2 O ®

3) K + H 2 O ® 4) Mg + H 2 O ®

44. На графике приведены энергетические диаграммы некаталитической и каталитической реакции разложения иодоводорода. Изменение энергии активации отражает энергетический отрезок:

1) b , 2) c , 3) d , 4) b– c .

45. Наибольшую энергию активации имеет реакция, описываемая схемой:

1) AgNO 3 + KCl ® AgCl + KNO 3 ,

2) BaCl 2 + K 2 SO 4 ® BaSO 4 + 2KCl,

3) 2Na + 2H 2 O ® 2NaOH + 2H 2 ,

6.2. Химическое равновесие.

Наряду с практически необратимыми химическими реакциями:

СaCl 2 + 2AgNO 3 = Ca(NO 3) 2 + 2AgCl↓ и др.

известны многочисленные процессы, когда химическое превращение не доходит до конца, а возникает равновесная смесь всех участников и продуктов реакции, находящихся как в левой, так и в правой частях стехиометрического уравнения реакции. Так, при стандартных условиях обратимой является система:

Рассмотрим особенности протекания обратимых процессов на примере системы, которая, в общем виде, имеет вид:

При условии, что прямая → и обратная ← реакции протекают в одну стадию, согласно закону действующих масс значения скоростей для прямой (V прям) и обратной (V обр) реакций описываются следующими кинетическими уравнениями:

где k прям и k обр - константы скорости, соответственно, прямой и обратной реакций.

В начальный момент времени (см. рис. 6.2) концентрации исходных веществ [A] и [B], а следовательно, и скорость прямой реакции имеют максимальное значение. Концентрации продуктов реакции [С] и [D] и скорость обратной реакции в начальный момент равны нулю. В ходе реакции концентрации исходных веществ уменьшаются, что приводит к снижению скорости прямой реакции. Концентрации же продуктов реакции, а, следовательно, и скорость обратной реакции возрастают. Наконец, наступает момент, при котором скорости прямой и обратной реакций становятся равными.

Состояние системы, при котором V прям = V обр называется химическим равновесием . Это равновесие является динамическим , поскольку в системе имеет место двусторонняя реакция – в прямом (A и B – реагенты, C и D – продукты) и в обратном (A и B – продукты, C и D – реагенты) направлениях.

V обр.

Время реакции

Рис. 6.2. Зависимость скоростей прямой и обратной реакций

от времени их протекания.

В обратимой системе, находящейся в состоянии равновесия, концентрации всех участников процесса называются равновесными концентрациями , так как при этом постоянно и с одинаковой скоростью протекают как прямая, так и обратная реакции.

Количественную характеристику химического равновесия можно вывести, используя соответствующие кинетические уравнения :

Так как константы скоростей реакций при фиксированной температуре постоянны, то будет постоянным и отношение

называемое константой химического равновесия . Приравнивая правые части кинетических уравнений для прямой и обратной реакций можно получить:

где K р – константа химического равновесия, выраженная через равновесные концентрации участников реакции.

Константа химического равновесия представляет собой отношение произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ в степенях их стехиометрических коэффициентов.

Например, для обратимой реакции

выражения для константы равновесия имеет вид:

Если в процессе химического превращения участвуют две или несколько фаз, то в выражении для константы равновесия следует учитывать только те из них, в которых происходят изменения концентраций реагентов. Например, в выражение для константы равновесия для системы

общее количество моль газообразных веществ до и после реакции остается постоянным и давление в системе не меняется. Равновесие в данной системе при изменении давления не смещается.

Влияние изменения температуры на смещение химического равновесия.

В каждой обратимой реакции одно из направлений отвечает экзотермическому процессу, а другое – эндотермическому. Так в реакции синтеза аммиака прямая реакция – экзотермическая, а обратная реакция – эндотермическая.

1) концентрации H 2 , N 2 и NH 3 не изменяются со временем,

3) число молекул NH 3 , распадающихся в единицу времени, равно половине общего числа молекул H 2 и N 2 , образующихся за это время,

4) общее число молекул H 2 и N 2 , превращающихся в единицу времени в NH 3 , равно числу молекул NH 3 , образующихся за это же время.

49. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. Химическое равновесие в системе: 2SO 2 + O 2 2SO 3 ∆Н ˂0 нарушит:

1) уменьшение давления в системе,

2) нагревание,

4) увеличение концентрации кислорода.

50. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. Чтобы сместить равновесие в системе N 2 + 3H 2 2NH 3 ∆Н ˂0 влево, надо:

1) ввести в систему H 2 ,

2) удалить из системы NH 3 ,

4) повысить давление,

8) увеличить температуру.

51. Для смещения равновесия реакции 2SO 2 + O 2 2SO 3 ∆Н ˂0 вправо, необходимо:

1) нагреть систему,

2) ввести в систему O 2 ,

4) ввести в систему SO 3 ,

8) уменьшить давление в системе.

52. Правилу (принципу) Ле Шателье не соответствует утверждение:

1) повышение температуры смещает равновесие в сторону эндотермической реакции;

2) понижение температуры смещает равновесие в сторону экзотермической реакции;

3) повышение давления смещает равновесие в сторону реакции, ведущей к увеличению объема;

N 2 + O 2 ∆Н ˂0,2H 2 O (пар) , 2NH 3 кат. 3H 2 + N 2 . B ,

2) k 1 Ч = k 2 2 ,

67. На константу равновесия (K p ) влияет:

1) давление,

2) температура,

3) концентрация,

4) катализатор.

ОПРЕДЕЛЕНИЕ

Химическими реакция называют превращения веществ, в которых происходит изменение их состава и (или) строения.

Наиболее часто под химическими реакциями понимают процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются с помощью химических уравнений, содержащих формулы исходных веществ и продуктов реакции. Согласно закону сохранения массы, число атомов каждого элемента в левой и правой частях химического уравнения одинаково. Обычно формулы исходных веществ записывают в левой части уравнения, а формулы продуктов – в правой. Равенство числа атомов каждого элемента в левой и правой частях уравнения достигается расстановкой перед формулами веществ целочисленных стехиометрических коэффициентов.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции: температура, давление, излучение и т.д., что указывается соответствующим символом над (или «под») знаком равенства.

Все химические реакции могут быть сгруппированы в несколько классов, которым присущи определенные признаки.

Классификация химических реакций по числу и составу исходных и образующихся веществ

Согласно этой классификации, химические реакции подразделяются на реакции соединения, разложения, замещения, обмена.

В результате реакций соединения из двух или более (сложных или простых) веществ образуется одно новое вещество. В общем виде уравнение такой химической реакции будет выглядеть следующим образом:

Например:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2

SO 3 + H 2 O = H 2 SO 4

2Mg + O 2 = 2MgO.

2FеСl 2 + Сl 2 = 2FеСl 3

Реакции соединения в большинстве случаев экзотермические, т.е. протекают с выделением тепла. Если в реакции участвуют простые вещества, то такие реакции чаще всего являются окислительно-восстановительными (ОВР), т.е. протекают с изменением степеней окисления элементов. Однозначно сказать будет ли реакция соединения между сложными веществами относиться к ОВР нельзя.

Реакции, в результате которых из одного сложного вещества образуется несколько других новых веществ (сложных или простых) относят к реакциям разложения . В общем виде уравнение химической реакции разложения будет выглядеть следующим образом:

Например:

CaCO 3 CaO + CO 2 (1)

2H 2 O =2H 2 + O 2 (2)

CuSO 4 × 5H 2 O = CuSO 4 + 5H 2 O (3)

Cu(OH) 2 = CuO + H 2 O (4)

H 2 SiO 3 = SiO 2 + H 2 O (5)

2SO 3 =2SO 2 + O 2 (6)

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 +4H 2 O (7)

Большинство реакций разложения протекает при нагревании (1,4,5). Возможно разложение под действием электрического тока (2). Разложение кристаллогидратов, кислот, оснований и солей кислородсодержащих кислот (1, 3, 4, 5, 7) протекает без изменения степеней окисления элементов, т.е. эти реакции не относятся к ОВР. К ОВР реакциям разложения относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления (6).

Реакции разложения встречаются и в органической химии, но под другими названиями — крекинг (8), дегидрирование (9):

С 18 H 38 = С 9 H 18 + С 9 H 20 (8)

C 4 H 10 = C 4 H 6 + 2H 2 (9)

При реакциях замещения простое вещество взаимодействует со сложным, образуя новое простое и новое сложное вещество. В общем виде уравнение химической реакции замещения будет выглядеть следующим образом:

Например:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 (1)

Zn + 2НСl = ZnСl 2 + Н 2 (2)

2КВr + Сl 2 = 2КСl + Вr 2 (3)

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 (4)

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 (5)

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 (6)

СН 4 + Сl 2 = СН 3 Сl + НСl (7)

Реакции замещения в своем большинстве являются окислительно-восстановительными (1 – 4, 7). Примеры реакций разложения, в которых не происходит изменения степеней окисления немногочисленны (5, 6).

Реакциями обмена называют реакции, протекающие между сложными веществами, при которых они обмениваются своими составными частями. Обычно этот термин применяют для реакций с участием ионов, находящихся в водном растворе. В общем виде уравнение химической реакции обмена будет выглядеть следующим образом:

АВ + СD = АD + СВ

Например:

CuO + 2HCl = CuCl 2 + H 2 O (1)

NaOH + HCl = NaCl + H 2 O (2)

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 (3)

AgNО 3 + КВr = АgВr ↓ + КNО 3 (4)

СrСl 3 + ЗNаОН = Сr(ОН) 3 ↓+ ЗNаСl (5)

Реакции обмена не являются окислительно-восстановительными. Частный случай этих реакций обмена -реакции нейтрализации (реакции взаимодействия кислот со щелочами) (2). Реакции обмена протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного вещества (3), осадка (4, 5) или малодиссоциирующего соединения, чаще всего воды (1, 2).

Классификация химических реакций по изменениям степеней окисления

В зависимости от изменения степеней окисления элементов, входящих в состав реагентов и продуктов реакции все химические реакции подразделяются на окислительно-восстановительные (1, 2) и, протекающие без изменения степени окисления (3, 4).

2Mg + CO 2 = 2MgO + C (1)

Mg 0 – 2e = Mg 2+ (восстановитель)

С 4+ + 4e = C 0 (окислитель)

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O (2)

Fe 2+ -e = Fe 3+ (восстановитель)

N 5+ +3e = N 2+ (окислитель)

AgNO 3 +HCl = AgCl ↓ + HNO 3 (3)

Ca(OH) 2 + H 2 SO 4 = CaSO 4 ↓ + H 2 O (4)

Классификация химических реакций по тепловому эффекту

В зависимости от того, выделяется ли или поглощается тепло (энергия) в ходе реакции, все химические реакции условно разделяют на экзо – (1, 2) и эндотермические (3), соответственно. Количество тепла (энергии), выделившееся или поглотившееся в ходе реакции называют тепловым эффектом реакции. Если в уравнении указано количество выделившейся или поглощенной теплоты, то такие уравнения называются термохимическими.

N 2 + 3H 2 = 2NH 3 +46,2 кДж (1)

2Mg + O 2 = 2MgO + 602, 5 кДж (2)

N 2 + O 2 = 2NO – 90,4 кДж (3)

Классификация химических реакций по направлению протекания реакции

По направлению протекания реакции различают обратимые (химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ) и необратимые (химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ).

Для обратимых реакций уравнение в общем виде принято записывать следующим образом:

А + В ↔ АВ

Например:

СН 3 СООН + С 2 Н 5 ОН↔ Н 3 СООС 2 Н 5 + Н 2 О

Примерами необратимых реакций может служить следующие реакции:

2КСlО 3 → 2КСl + ЗО 2

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О

Свидетельством необратимости реакции может служить выделение в качестве продуктов реакции газообразного вещества, осадка или малодиссоциирующего соединения, чаще всего воды.

Классификация химических реакций по наличию катализатора

С этой точи зрения выделяют каталитические и некаталитические реакции.

Катализатором называют вещество, ускоряющее ход химической реакции. Реакции, протекающие с участием катализаторов, называются каталитическими. Протекание некоторых реакций вообще невозможно без присутствия катализатора:

2H 2 O 2 = 2H 2 O + O 2 (катализатор MnO 2)

Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию (автокаталитические реакции):

MeO+ 2HF = MeF 2 + H 2 O, где Ме – металл.

Примеры решения задач

ПРИМЕР 1


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав