30.09.2019

Метод касательных. Решение систем нелинейных уравнений установившегося режима методом ньютона - рафсона


Задача о нахождении решений системы из n нелинейных алгебраических или трансцендентных уравнений сn неизвестными вида

f 1(x 1, x 2, … x n ) = 0,

f 2(x 1, x 2, … x n ) = 0,

……………………

f n (x 1 ,x 2 ,… x n ) = 0,

широко рассмотрена в вычислительной практике. Подобные системы уравнений могут возникать, например, при численном моделировании нелинейных физических систем на этапе поиска их стационарных состояний. В яде случаев системы вида (6.1) получаются опосредованно, в процессе решения некоторой другой вычислительной задачи. К примеру, пытаясь минимизировать функцию нескольких переменных, можно искать те точки многомерного пространства, где градиент функции равен нулю. При этом приходится решать систему уравнений (6.1) с левыми частями – проекциями градиента на координатные оси.

В векторных обозначениях систему (6.1) можно записать в более компактной форме

вектор столбец функций, символом () T обозначена операция транспони-

Поиск решений системы нелинейных уравнений – это задача намного более сложная, чем решение одного нелинейного уравнения. Тем не менее ряд итерационных методов решения нелинейных уравнений может быть распространен и на системы нелинейных уравнений.

Метод простой итерации

Метод простой итерации для систем нелинейных уравнений по существу является обобщением одноименного метода для одного уравнения. Он основан на том, что система уравнений (6.1) приводится к виду

x 1= g 1(x 1, x 2, … , x n ) , x 2= g 2(x 1, x 2, … , x n ) ,

……………………

x n= g n(x 1 , x 2 , … , x n) ,

и итерации проводятся по формулам

x 1 (k + 1 )= g 1 (x 1 (k ), x 2 (k ), … , x n (k )) , x 2 (k + 1 )= g 2 (x 1 (k ), x 2 (k ), … , x n (k )) ,

……………………………

x n (k + 1 )= g n (x 1 (k ), x 2 (k ), … , x n (k )) .

Здесь верхний индекс указывает на номер приближения. Итерационный процесс (6.3) начинается с некоторого начального приближения

(x 1 (0 ) ,x 2 (0 ) ,… ,x n (0 ) ) и продолжаются до тех пор, пока модули приращений

всех аргументов после одной k- итерации не станут меньше заданной величиныε :x i (k + 1 ) − x i (k ) < ε дляi = 1,2,… ,n .

Хотя метод простой итерации прямо ведет к решению и легко программируется, он имеет два существенных недостатка. Один из них – медленная сходимость. Другой состоит в том, что если начальное приближение выбрано далеко от истинного решения (X 1 ,X 2 ,… ,X n ) , то сходимость

метода не гарантированна. Ясно, что проблема выбора начального приближения, не простая даже для одного уравнения, для нелинейных систем становится весьма сложной.

Решить систему нелинейных уравнений:

(x ...

) =0

F n (x 1 ...

x n) = 0 .

Не существует прямых методов решения нелинейных систем общего вида. Лишь в отдельных случаях систему (4.1) можно решить непосредственно. Например, для случая двух уравнений иногда удается выразить одно неизвестное через другое и таким образом свести задачу к решению одного нелинейного уравнения относительно одного неизвестного.

Для решения систем нелинейных уравнений обычно используются итерационные методы.

Метод Ньютона

В случае одного уравнения F (x ) = 0 алгоритм метода Ньютона был легко получен путем записи уравнений касательной к кривойy = F (x ) . В основе метода Ньютона для систем уравнений лежит использование разложения функцийF 1 (x 1 ...x n ) в ряд Тейлора, причем члены, содержа-

щие вторые (и более высоких порядков) производные, отбрасываются. Пусть приближенные значения неизвестных системы (4.1) равны со-

ответственно a 1 ,a 2 ,....,a n . Задача состоит в нахождении приращений (по-

правок) к этим значениям

x 1 ,x 2 ,...,

x n , благодаря которым решение сис-

темы запишется в виде:

x 1= a 1+ x 1,

x 2= a 2+

x 2 , .... ,x n = a n + x n .

Проведем разложение левых частей уравнений (4.1) с учетом разложения в ряд Тейлора, ограничиваясь лишь линейными членами относи-

тельно приращений:

F1 (x1 ... xn ) ≈ F1 (a1 ... an ) +

∂ F 1

x 1+

+ ∂ F 1

x n,

∂x

∂x

F2 (x1 ... xn ) ≈ F2 (a1 ... an ) +

∂ F 2

x 1+

∂ F 2

x n,

∂x

∂x

...................................

F n(x 1 ... x n) ≈ F n(a 1 ... a n) +

∂ F n

x 1+

∂ F n

xn .

∂x

∂x

Подставляя в систему (4.1), получим следующую систему линейных алгебраических уравнений относительно приращений:

∂ F 1

∂ F 1

+ ∂ F 1

= −F ,

∂x

∂x

∂x

∂ F 2

∂ F 2

∂ F 2

= −F ,

∂x

∂x

∂x

..............................

∂ F n

∂ F n

∂ F n

= −F .

∂x

∂x

∂x

Значения F 1 ...

производные

вычисляются при

x 2 = a 2 , …x n = a n .

Определителем системы (4.3) является якобиан:

∂ F 1

∂ F 1

∂x

∂x

∂ F 2

∂ F 2

J = ∂ x

∂ x.

… … … …

∂ F n… … ∂ F n∂ x 1 ∂ x n

x 1= a 1,

Для существования единственного решения системы якобиан должен быть отличен от нуля на каждой итерации.

Таким образом, итерационный процесс решения системы уравнений методом Ньютона состоит в определении приращений x 1 ,x 2 , ...,x n к значениям неизвестных на каждой итерации путем решения системы линейных алгебраических уравнений (4.3). Счет прекращается, если все приращения становятся малыми по абсолютной величине: maxx i < ε . В ме-

тоде Ньютона также важен удачный выбор начального приближения для обеспечения хорошей сходимости. Сходимость ухудшается с увеличением числа уравнений системы.

В качестве примера рассмотрим использование метода Ньютона для решения системы двух уравнений:

∂ ∂ F 1. x

Величины, стоящие в правой части, вычисляются при x = a ,y = b .

Если выполняются условия

y − b

< εи

x − a

при заданном M , то

выводятся значения x иy ,

в противном случае

происходит вывод

x ,y ,M .

Метод Ньютона (метод касательных)

Пусть корень уравнения f(x)=0 отделен на отрезке , причем первая и вторая производные f’(x) и f""(x) непрерывны и знакопостоянны при хÎ .

Пусть на некотором шаге уточнения корня получено (выбрано) очередное приближение к корню х n . Тогда предположим, что следующее приближение, полученное с помощью поправки h n , приводит к точному значению корня

x = х n + h n . (1.2.3-6)

Считаяh n малой величиной, представим f(х n + h n) в виде ряда Тейлора, ограничиваясь линейными слагаемыми

f(х n + h n) »f(х n) + h n f’(х n). (1.2.3-7)

Учитывая, что f(x) = f(х n + h n) = 0, получим f(х n) + h n f ’(х n) » 0.

Отсюда h n » - f(х n)/ f’(х n). Подставим значение h n в (1.2.3-6) и вместо точного значения корня x получим очередное приближение

Формула (1.2.3-8) позволяет получить последовательность приближенийх 1 ,х 2 , х 3 …, которая при определенных условиях сходится к точному значению корняx, то есть

Геометрическая интерпретация метода Ньютона состоит в следующем
(рис.1.2.3-6). Примем за начальное приближение x 0 правый конец отрезка b и в соответствующей точке В 0 на графике функции y = f(x) построим касательную. Точка пересечения касательной с осью абсцисс принимается за новое более точное приближение х 1 . Многократное повторение этой процедуры позволяет получить последовательность приближений х 0 , х 1 , х 2 , . . ., которая стремится к точному значению корня x.

Расчетная формула метода Ньютона (1.2.3-8) может быть получена из геометрического построения. Так в прямоугольном треугольнике х 0 В 0 х 1 катет
х 0 х 1 = х 0 В 0 /tga. Учитывая, что точка В 0 находится на графике функции f(x), а гипотенуза образована касательной к графику f(x) в точке В 0 , получим

(1.2.3-9)

(1.2.3-10)

Эта формула совпадает с (1.2.3-8) для n-го приближения.

Из рис.1.2.3-6 видно, что выбор в качестве начального приближения точки а может привести к тому, что следующее приближение х 1 окажется вне отрезка , на котором отделен корень x . В этом случае сходимость процесса не гарантирована. В общем случае выбор начального приближения производится в соответствии со следующим правилом: за начальное приближение следует принять такую точку х 0 Î,в которой f(х 0)×f’’(х 0)>0, то есть знаки функции и ее второй производной совпадают.

Условия сходимости метода Ньютона сформулированы в следующей теореме.

Если корень уравнения отделен на отрезке , причем f’(х 0)и f’’(х) отличны от нуля и сохраняют свои знаки при хÎ , то, если выбрать в качестве начального приближения такую точку х 0 Î, что f(х 0).f¢¢(х 0)>0, то корень уравнения f(x)=0может быть вычислен с любой степенью точности.

Оценка погрешности метода Ньютона определяется следующим выражением:

(1.2.3-11)

где -- наименьшее значение при

Наибольшее значение при

Процесс вычислений прекращается, если ,

где -- заданная точность.

Кроме того, условием достижения заданной точности при уточнении корня методом Ньютона могут служить следующие выражения:

Схема алгоритма метода Ньютона приведена на рис. 1.2.3-7.

Левая часть исходного уравнения f(x) и ее производная f’(x)в алгоритме оформлены в виде отдельных программных модулей.

Рис. 1.2.3-7. Схема алгоритма метода Ньютона

Пример 1.2.3-3.Уточнить методом Ньютона корни уравнения x-ln(x+2) = 0при условии, что корни этого уравнения отделены на отрезках x 1 Î[-1.9;-1.1] и x 2 Î [-0.9;2].

Первая производная f’(x) = 1 – 1/(x+2) сохраняет свой знак на каждом из отрезков:

f’(x)<0 при хÎ [-1.9; -1.1],

f’(x)>0 при хÎ [-0.9; 2].

Вторая производная f"(x) = 1/(x+2) 2 > 0 при любых х.

Таким образом, условия сходимости выполняются. Поскольку f""(x)>0на всей области допустимых значений, то для уточнения корня за начальное приближение x 1 выберем х 0 =-1,9(так какf(-1,9)×f”(-1.9)>0). Получим последовательность приближений:

Продолжая вычисления, получим следующую последовательность первых четырех приближений: -1.9; –1.8552, -1.8421; -1.8414. Значение функции f(x) в точке x=-1.8414 равно f(-1.8414)=-0.00003.

Для уточнения корня x 2 Î[-0.9;2] выберем в качестве начального приближениях 0 =2 (f(2)×f”(2)>0). Исходя из х 0 = 2, получим последовательность приближений: 2.0;1.1817; 1.1462; 1.1461. Значение функции f(x) в точке x=1.1461 равно f(1.1461)= -0.00006.

Метод Ньютона обладает высокой скоростью сходимости, однако на каждом шаге он требует вычисления не только значения функции, но и ее производной.

Метод хорд

Геометрическая интерпретация метода хорд состоит в следующем
(рис.1.2.3-8).

Проведем отрезок прямой через точки A и B. Очередное приближение x 1 является абсциссой точки пересечения хорды с осью 0х. Построим уравнение отрезка прямой:

Положим y=0и найдем значение х=х 1 (очередное приближение):

Повторим процесс вычислений для получения очередного приближения к корню - х 2 :

В нашем случае (рис.1.2.11) и расчетная формула метода хорд будет иметь вид

Эта формула справедлива, когда за неподвижную точку принимается точка b, а в качестве начального приближения выступает точка a.

Рассмотрим другой случай (рис. 1.2.3-9), когда .

Уравнение прямой для этого случая имеет вид

Очередное приближение х 1 при y = 0

Тогда рекуррентная формула метода хорд для этого случая имеет вид

Следует отметить, что за неподвижную точку в методе хорд выбирают тот конец отрезка , для которого выполняется условие f (x)∙f¢¢ (x)>0.

Таким образом, если за неподвижную точку приняли точку а, то в качестве начального приближения выступает х 0 = b, и наоборот.

Достаточные условия, которые обеспечивают вычисление корня уравнения f(x)=0 по формуле хорд, будут теми же, что и для метода касательных (метод Ньютона), только вместо начального приближения выбирается неподвижная точка. Метод хорд является модификацией метода Ньютона. Разница состоит в том, что в качестве очередного приближения в методе Ньютона выступает точка пересечения касательной с осью 0Х,а в методе хорд – точка пересечения хорды с осью 0Х – приближения сходятся к корню с разных сторон.

Оценка погрешности метода хорд определяется выражением

(1.2.3-15)

Условие окончания процесса итераций по методу хорд

(1.2.3-16)

В случае, если M 1 <2m 1 , то для оценки погрешности метода может быть использована формула | x n -x n -1 |£e.

Пример 1.2.3-4. Уточнить корень уравнения e x – 3x = 0, отделенный на отрезке с точностью 10 -4 .

Проверим условие сходимости:

Следовательно, за неподвижную точку следует выбрать а=0, а в качестве начального приближения принять х 0 =1, поскольку f(0)=1>0 и f(0)*f"(0)>0.

Например:

Поставим задачу отыскать действительные корни данного уравнения.

А таковые точно есть! – из статей о графиках функций и уравнениях высшей математики вы хорошо знаете, что график функции-многочлена нечётной степени хотя бы один раз пересекает ось , следовательно, наше уравнение имеет по меньшей мере один действительный корень. Один. Или два. Или три.

Сначала напрашивается проверить, наличие рациональных корней. Согласно соответствующей теореме , на это «звание» могут претендовать лишь числа 1, –1, 3, –3, и прямой подстановкой легко убедиться, что ни одно из них «не подходит». Таким образом, остаются иррациональные значения. Иррациональный корень (корни) многочлена 3-й степени можно найти точно (выразить через радикалы) с помощью так называемых формул Кардано , однако этот метод достаточно громоздок. А для многочленов 5-й и бОльших степеней общего аналитического метода не существует вовсе, и, кроме того, на практике встречается множество других уравнений, в которых точные значения действительных корней получить невозможно (хотя они существуют).

Однако в прикладных (например, инженерных) задачах более чем допустимо использовать приближённые значения, вычисленные с определённой точностью .

Зададим для нашего примера точность . Что это значит? Это значит, что нам нужно отыскать ТАКОЕ приближённое значение корня (корней) , в котором мы гарантированно ошибаемся, не более чем на 0,001 (одну тысячную) .

Совершенно понятно, что решение нельзя начинать «наобум» и поэтому на первом шаге корни отделяют . Отделить корень – это значит найти достаточно малый (как правило, единичный) отрезок, которому этот корень принадлежит, и на котором нет других корней. Наиболее прост и доступен графический метод отделения корней . Построим поточечно график функции :

Из чертежа следует, что уравнение , судя по всему, имеет единственный действительный корень , принадлежащий отрезку . На концах данного промежутка функция принимает значения разных знаков: , и из факта непрерывности функции на отрезке сразу виден элементарный способ уточнения корня: делим промежуток пополам и выбираем тот отрезок, на концах которого функция принимает разные знаки. В данном случае это, очевидно, отрезок . Делим полученный промежуток пополам и снова выбираем «разнознаковый» отрезок. И так далее. Подобные последовательные действия называют итерациями . В данном случае их следует проводить до тех пор, пока длина отрезка не станет меньше удвоенной точности вычислений , и за приближённое значение корня следует выбрать середину последнего «разнознакового» отрезка.

Рассмотренная схема получила естественное название – метод половинного деления . И недостаток этого метода состоит в скорости. Медленно. Очень медленно. Слишком много итераций придётся совершить, прежде чем мы достигнем требуемой точности. С развитием вычислительной техники это, конечно, не проблема, но математика – на то и математика, чтобы искать наиболее рациональные пути решения.

И одним из более эффективных способов нахождения приближённого значения корня как раз и является метод касательных . Краткая геометрическая суть метода состоит в следующем: сначала с помощью специального критерия (о котором чуть позже) выбирается один из концов отрезка. Этот конец называют начальным приближением корня, в нашем примере: . Теперь проводим касательную к графику функции в точке с абсциссой (синяя точка и фиолетовая касательная) :

Данная касательная пересекла ось абсцисс в жёлтой точке, и обратите внимание, что на первом шаге мы уже почти «попали в корень»! Это будет первое приближение корня . Далее опускаем жёлтый перпендикуляр к графику функции и «попадаем» в оранжевую точку. Через оранжевую точку снова проводим касательную, которая пересечёт ось ещё ближе к корню! И так далее. Нетрудно понять, что, используя метод касательных, мы приближаемся к цели семимильными шагами, и для достижения точности потребуется буквально несколько итераций.

Поскольку касательная определяется через производную функции , то этот урок попал в раздел «Производные» в качестве одного из её приложений. И, не вдаваясь в подробное теоретическое обоснование метода , я рассмотрю техническую сторону вопроса. На практике описанная выше задача встречается примерно в такой формулировке:

Пример 1

С помощью графического метода найти промежуток , на котором находится действительный корень уравнения . Пользуясь методом Ньютона, получить приближенное значение корня с точностью до 0,001

Перед вами «щадящая версия» задания, в которой сразу констатируется наличие единственного действительного корня.

Решение : на первом шаге следует отделить корень графически. Это можно сделать путём построения графика (см. иллюстрации выше) , но такой подход обладает рядом недостатков. Во-первых, не факт, что график прост (мы же заранее не знаем) , а программное обеспечение – оно далеко не всегда под рукой. И, во-вторых (следствие из 1-го) , с немалой вероятностью получится даже не схематичный чертёж, а грубый рисунок, что, разумеется, не есть хорошо.

Ну а зачем нам лишние трудности? Представим уравнение в виде , АККУРАТНО построим графики и отметим на чертеже корень («иксовую» координату точки пересечения графиков) :

Очевидное преимущество этого способа состоит в том, что графики данных функций строятся от руки значительно точнее и намного быстрее. Кстати, заметьте, что прямая пересекла кубическую параболу в единственной точке, а значит, предложенное уравнение и в самом деле имеет только один действительный корень. Доверяйте, но проверяйте;-)

Итак, наш «клиент» принадлежит отрезку и «на глазок» примерно равен 0,65-0,7.

На втором шаге нужно выбрать начальное приближение корня. Обычно это один из концов отрезка. Начальное приближение должно удовлетворять следующему условию:

Найдём первую и вторую производные функции :

и проверим левый конец отрезка:

Таким образом, ноль «не подошёл».

Проверяем правый конец отрезка:

– всё хорошо! В качестве начального приближения выбираем .

На третьем шаге нас ожидает дорога к корню. Каждое последующее приближение корня рассчитывается на основании предшествующих данных с помощью следующей рекуррентной формулы:

Процесс завершается при выполнении условия , где – заранее заданная точность вычислений. В результате за приближённое значение корня принимается «энное» приближение: .

На очереди рутинные расчёты:

(округление обычно проводят до 5-6 знаков после запятой)

Поскольку полученное значение больше , то переходим к 1-му приближению корня:

Вычисляем:

, поэтому возникает потребность перейти ко 2-му приближению:

Заходим на следующий круг:

, таким образом, итерации закончены, и в качестве приближённого значения корня следует взять 2-е приближение, которое в соответствии с заданной точностью нужно округлить до одной тысячной:

На практике результаты вычислений удобно заносить в таблицу, при этом, чтобы несколько сократить запись, дробь часто обозначают через :

Сами же вычисления по возможности лучше провестив Экселе – это намного удобнее и быстрее:

Ответ : с точностью до 0,001

Напоминаю, что эта фраза подразумевает тот факт, что мы ошиблись в оценке истинного значения корня не более чем на 0,001. Сомневающиеся могут взять в руки микрокалькулятор и ещё раз подставить приближенное значение 0,674 в левую часть уравнения .

А теперь «просканируем» правый столбец таблицы сверху вниз и обратим внимание, что значения неуклонно убывают по модулю. Этот эффект называют сходимостью метода, которая позволяет нам вычислить корень со сколь угодно высокой точностью. Но сходимость имеет место далеко не всегда – она обеспечивается рядом условий , о которых я умолчал. В частности, отрезок, на котором изолируется корень, должен быть достаточно мал – в противном случае значения будут меняться беспорядочным образом, и мы не сможем завершить алгоритм.

Что делать в таких случаях? Проверить выполнение указанных условий (см. выше по ссылке) , и при необходимости уменьшить отрезок. Так, условно говоря, если бы в разобранном примере нам не подошёл промежуток , то следовало бы рассмотреть, например, отрезок . На практике мне такие случаи встречались , и этот приём реально помогает! То же самое нужно сделать, если оба конца «широкого» отрезка не удовлетворяют условию (т.е. ни один из них не годится на роль начального приближения) .

Но обычно всё работает, как часы, хотя и не без подводных камней:

Пример 2

Определить графически количество действительных корней уравнения , отделить эти корни и применяя способ Ньютона, найти приближенные значения корней с точностью

Условие задачи заметно ужесточилось: во-первых, в нём содержится толстый намёк на то, что уравнение имеет не единственный корень, во-вторых, повысилось требование к точности, и, в-третьих, с графиком функции совладать значительно труднее.

А поэтому решение начинаем со спасительного трюка: представим уравнение в виде и изобразим графики :


Из чертежа следует, что наше уравнение имеет два действительных корня:

Алгоритм, как вы понимаете, нужно «провернуть» дважды. Но это ещё на самый тяжелый случай, бывает, исследовать приходится 3-4 корня.

1) С помощью критерия выясним, какой из концов отрезка выбрать в качестве начального приближения первого корня. Находим производные функции :

Тестируем левый конец отрезка:

– подошёл!

Таким образом, – начальное приближение.

Уточнение корня проведем методом Ньютона, используя рекуррентную формулу:
– до тех пор, пока дробь по модулю не станет меньше требуемой точности:

И здесь слово «модуль» приобретает неиллюзорную важность, поскольку значения получаются отрицательными:


По этой же причине следует проявить повышенное внимание при переходе к каждому следующему приближению:

Несмотря на достаточно высокое требование к точности, процесс опять завершился на 2-м приближении: , следовательно:

С точностью до 0,0001

2) Найдем приближённое значение корня .

Проверяем на «вшивость» левый конец отрезка:

, следовательно, он не годится в качестве начального приближения.

2. Метод Ньютона решения систем нелинейных уравнений.

Этот метод обладает гораздо более быстрой сходимостью, чем метод простой итерации. В основе метода Ньютона для системы уравнений (1.1) лежит использование разложения функций

, где
(2.1)

в ряд Тейлора, причём члены, содержащие вторые и более высокие порядки производных, отбрасываются. Такой подход позволяет решение одной нелинейной системы (1.1) заменить решением ряда линейных систем.

Итак, систему (1.1) будем решать методом Ньютона. В области D выберем любую точку
и назовём её нулевым приближением к точному решению исходной системы. Теперь функции (2.1) разложим в ряд Тейлора в окрестности точки . Будем иметь

Т.к. левые части (2.2) должны обращаться в ноль согласно (1.1), то и правые части (2.2) тоже должны обращаться в ноль. Поэтому из (2.2) имеем

Все частные производные в (2.3) должны быть вычислены в точке .

(2.3) есть система линейных алгебраических уравнений относительно неизвестных Эту систему можно решить методом Крамера, если её основной определитель будет отличен от нуля и найти величины

Теперь можно уточнить нулевое приближение , построив первое приближение с координатами

т.е.
. (2.6)

Выясним, получено ли приближение (2.6) с достаточной степенью точности. Для этого проверим условие

,
(2.7)

где наперёд заданное малое положительное число (точность, с которой должна быть решена система (1.1)). Если условие (2.7) будет выполнено, то за приближённое решение системы (1.1) выберем (2.6) и закончим вычисления. Если же условие (2.7) выполняться не будет, то выполним следующее действие. В системе (2.3) вместо
возьмём уточнённые значения

, (2.8)

т.е. выполним следующие действия

. (2.9)

После этого система (2.3) будет системой линейных алгебраических уравнений относительно величин Определив эти величины, следующее второе приближение
к решению системы (1.1) найдём по формулам

Теперь проверим условие (2.7)

Если это условие выполняется, то заканчиваем вычисления, приняв за приближённое решение системы (1.1) второе приближение
. Если же это условие не выполняется, то продолжаем строить следующее приближение, приняв в (2.3)
Строить приближения нужно до тех пор, пока условие на не будет выполнено.

Рабочие формулы метода Ньютона для решения системы (1.1) можно записать в виде.

Вычислить последовательность

Здесь
являются решением системы

Сформулируем алгоритм вычислений по формулам (2.11)-(2.13).

1. Выберем нулевое приближение , принадлежащее области D.

2. В системе линейных алгебраических уравнений (2.13) положим
,а .

3. Решим систему (2.13) и найдём величины
.

4. В формулах (2.12) положим
и вычислим компоненты следующего приближения .

5. Проверим условие (2.7) на : (См. алгоритм вычисления максимума нескольких величин.)

6. Если это условие выполняется, то заканчиваем вычисления, выбрав за приближённое решение системы (1.1) приближение . Если же это условие не выполняется, то перейдём к п.7.

7. Положим
для всех .

8. Выполним п.3, положив
.

Геометрически этот алгоритм можно записать в виде.

Алгоритм. Вычисления максимума нескольких величин .

Пример . Рассмотрим использование метода Ньютона для решения системы двух уравнений.

Методом Ньютона с точностью до решить следующую систему нелинейных уравнений

, (2.14)

здесь
. Выберем нулевое приближение
, принадлежащее области D. Построим систему линейных алгебраических уравнений (2.3). Она будет иметь вид

(2.15)

Обозначим

Решим систему (2.15) относительно неизвестных
, например методом Крамера. Формулы Крамера запишем в виде

(2.17)

где основной определитель системы (2.15)

(2.18)

а вспомогательные определители системы (2.15) имеют вид

.

Найденные значения подставим в (2.16) и найдём компоненты первого приближения
к решению системы (2.15).

Проверим условие

, (2.19)

если это условие выполняется, то заканчиваем вычисления, приняв за приближённое решение системы (2.15) первое приближение, т. е.
. Если условие (2.19) не выполняется, то положим
,
и построим новую систему линейных алгебраических уравнений (2.15). Решив её, найдём второе приближение
. Проверим его на . Если это условие будет выполняться, то за приближённое решение системы (2.15) выберем
. Если условие на не будет выполняться, положим
,
и построим следующую систему (2.15) для нахождения
и т. д.

Задания

Во всех заданиях требуется:

    Составить программу численной реализации метода, согласно предложенному алгоритму.

    Получить результаты вычислений.

    Проверить полученные результаты.

Задана система двух нелинейных уравнений.

1.
2.

3.
4.

5.
6.

7.
8.

9.
10.

11.
12.

13.
14.

15.
.

Глава 3. Численные методы решения систем линейных алгебраических уравнений (СЛАУ).

Цель работы . Знакомство с некоторыми приближёнными методами решения СЛАУ и их численной реализацией на ПК.

Предварительные замечания. Все методы решения СЛАУ обычно разделяют на две большие группы. К первой группе относятся методы, которые принято называть точными. Эти методы позволяют для любых систем найти точные значения неизвестных после конечного числа арифметических операций, каждая из которых выполняется точно.

Ко второй группе относятся все методы, не являющиеся точными. Их называют итерационными, или численными, или приближёнными. Точное решение, при использовании таких методов, получается в результате бесконечного процесса приближений. Привлекательной чертой таких методов является их самоисправляемость и простота реализации на ПК.

Рассмотрим некоторые приближённые методы решения СЛАУ и построим алгоритмы их численной реализации. Приближённое решение СЛАУ будем получать с точностью до , где некоторое очень маленькое положительное число.

1. Метод итерации.

Пусть СЛАУ задана в виде

(1.1)

Эту систему можно записать в матричном виде

, (1.2)

где
- матрица коэффициентов при неизвестных в системе (1.1),
- столбец свободных членов,
- столбец неизвестных системы (1.1).

. (1.3)

Решим систему (1.1) методом итерации. Для этого выполним следующие действия.

Во-первых. Выберем нулевое приближение

(1.4)

к точному решению (1.3) системы (1.1). Компонентами нулевого приближения могут быть любые числа. Но удобнее за компоненты нулевого приближения взять либо нули
, либо свободные члены системы (1.1)

Во-вторых. Компоненты нулевого приближения подставим в правую часть системы (1.1) и вычислим

(1.5)

Величины, стоящие слева в (1.5) являются компонентами первого приближения
Действия, в результате которых получилось первое приближение, называются итерацией.

В-третьих. Проверим нулевое и первое приближения на

(1.6)

Если все условия (1.6) выполняются, то за приближённое решение системы (1.1) выберем, либо , либо всё равно, т.к. они отличаются друг от друга не больше чем на и закончим вычисления. Если хотя бы одно из условий (1.6) не будет выполнено, то перейдём к следующему действию.

В-четвёртых. Выполним следующую итерацию, т.е. в правую часть системы (1.1) подставим компоненты первого приближения и вычислим компоненты второго приближения
, где

В-пятых. Проверим
и на , т.е. проверим условие (1.6) для этих приближений. Если все условия (1.6) будут выполнены, то за приближённое решение системы (1.1) выберем, либо , либо всё равно, т.к. они отличаются друг от друга не больше чем на . В противном случае будем строить следующую итерацию, подставив компоненты второго приближения в правую часть системы (1.1).

Итерации нужно строить до тех пор, пока два соседних приближения
и будут отличаться друг от друга не больше, чем на .

Рабочую формулу метода итерации решения системы (1.1) можно записать в виде

Алгоритм численной реализации формулы (1.7) может быть таким.

Достаточные условия сходимости метода итерации для системы (1.1) имеют вид

1.
, .

2.
,
.

3.

2. Метод простой итерации.

Пусть система линейных алгебраических уравнений (СЛАУ) задана в виде

(2.1)

Чтобы систему (2.1) решить методом простой итерации, её сначала надо привести к виду

(2.2)

В системе (2.2) -ое уравнение представляет собой -ое уравнение системы (2.1), разрешённое относительно –ой неизвестной (
).

Метод решения системы (2.1), состоящий в сведении её к системе (2.2) с последующим решением системы (2.2) методом итерации, называется методом простой итерации для системы (2.1).

Таким образом, рабочие формулы метода простой итерации решения системы (2.1) будут иметь вид

(2.3)

Формулы (2.3) можно записать в виде

Алгоритм численной реализации метода простой итерации для системы (2.1) по формулам (2.4) может быть таким.

Этот алгоритм можно записать геометрически.

Достаточные условия сходимости метода простой итерации для системы (2.1) имеют вид

1.
, .

2.
,
.

3.

3. Стационарный метод Зейделя.

Метод Зейделя решения СЛАУ отличается от метода итерации тем, что найдя какое-то приближение для -той компоненты, мы сразу же используем его для отыскания следующих
,
, …, -ой компонент. Такой подход позволяет обеспечить более высокую скорость сходимости метода Зейделя по сравнению с методом итерации.

Пусть СЛАУ задана в виде

(3.1)

Пусть
- нулевое приближение к точному решению
системы (3.1). И пусть найдено -ое приближение
. Определим компоненты
-ого приближения по формулам

(3.2)

Формулы (3.2) можно записать в компактном виде

,
,
(3.3)

Алгоритм численной реализации метода Зейделя решения системы (3.1) по формулам (3.3) может быть таким.

1. Выберем , например,
,

2. Положим .

3. Для всех вычислим .

4. Для всех проверим условия
.

5. Если все условия в п.4 будут выполнены, то за приближенное решение системы (3.1) выберем либо , либо и закончим вычисления. Если хотя бы одно условие в п.4 не будет выполнено, перейдем к п.6.

6. Положим и перейдем к п.3.

Этот алгоритм можно записать геометрически.

Достаточное условие сходимости метода Зейделя для системы (3.1) имеет вид
, .

4. Нестационарный метод Зейделя.

Этот метод решения СЛАУ (3.1) обеспечивает еще более высокую скорость сходимости метода Зейделя.

Пусть каким-либо образом для системы (3.1) найдены компоненты -ого приближения и -ого приближения .

Вычислим вектор поправки

Подсчитаем величины

, (4.2)

Расположим величины
, в порядке их убывания.

В таком же порядке перепишем уравнения в системе (3.1) и неизвестные в этой системе., : Линейная алгебра и нелинейные ... Руководство для лабораторных работ по ... методические указания для практических работ по для студентов ...

  • Учебная литература (естественные науки и технические) 2000-2011 цикл опд – 10лет цикл сд – 5 лет

    Литература

    ... Естественные науки в целом 1. Астрономия [Текст] : пособие для ... Численные методы : Линейная алгебра и нелинейные ... Руководство для лабораторных работ по ... методические указания для практических работ по дисциплине "Экономика транспорта" для студентов ...

  • - естественные науки (1)

    Учебное пособие

    ... руководство для студентов и преподавателей, предназначенное для использования не только при изучении методов работы ... выработке практических навыков с использованием реальных данных. Методические рекомендации по выполнению зачетной работы по данному...

  • - естественные науки - физико-математические науки - химические науки - науки о земле (геодезические геофизические геологические и географические науки)

    Документ

    ... для студентов естественно - ... работ по дисциплине "Генетика и селекция", посвященных актуальным проблемам этой науки . Систематизирована самостоятельная работа студентов по теоретическому и практическому ... линейного , нелинейного , динамического. Все методы ...

  • - естественные науки - физико-математические науки - химические науки - науки о земле (геодезические геофизические геологические и географические науки) (7)

    Список учебников

    Определитель Еремина в линейной и нелинейной алгебре : линейное и нелинейное программирование: новый метод / Еремин, Михаил... Для студентов и преподавателей геологических специальностей вузов. кх-1 1794549 99. Д3 П 693 Практическое руководство по ...

  • ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

    «Приднестровский государственный университет им. Т.Г. Шевченко»

    Рыбницкий филиал

    Кафедра физики, математики и информатики

    Курсовая работа

    по дисциплине: «Практикум по решению задач на ЭВМ»

    «Метод Ньютона для решения нелинейных уравнений»

    Выполнила:

    студентка III курса;

    330 й группы

    специальности: «Информатика

    с доп. специальностью английский

    Нистор А. Г..

    Проверила:

    преподаватель Панченко Т. А.


    Внедрение ЭВМ во все сферы человеческой деятельности требует от специалистов разного профиля овладения навыками использования вычислительной техники. Повышается уровень подготовки студентов вузов, которые уже с первых курсов приобщаются к использованию ЭВМ и простейших численных методов, не говоря уже о том, при что выполнении курсовых и дипломных проектов применение вычислительной техники становится нормой в подавляющем большинстве вузов.

    Вычислительная техника используется сейчас не только в инженерных расчетах и экономических науках, но и таких традиционно нематематических специальностях, как медицина, лингвистика, психология. В связи с этим можно констатировать, что применение ЭВМ приобрело массовый характер. Возникла многочисленная категория специалистов - пользователей ЭВМ, которым необходимы знания по применению ЭВМ в своей отрасли - навыки работы с уже имеющимся программным обеспечением, а также создания своего собственного программного обеспечения, приспособленного для решения конкретной задачи. И здесь на помощь пользователю приходят описания языков программирования высокого уровня и численные методы.

    Численные методы разрабатывают и исследуют, как правило, высококвалифицированные специалисты-математики. Для большинства пользователей главной задачей является понимание основных идей и методов, особенностей и областей применения. Однако, пользователи хотят работать с ЭВМ не только как с высокоинтеллектуальным калькулятором, а еще и как с помощником в повседневной работе, хранилищем информации с быстрым и упорядоченным доступом, а так же с источником и обработчиком графической информации. Все эти функции современной ЭВМ я предполагаю продемонстрировать в настоящей курсовой работе.

    Цели и задачи.

    Целью данной курсовой работы является изучение и реализация в программном продукте решения нелинейных уравнений при помощи метода Ньютона. Данная работа состоит из трёх разделов, заключения и приложения. Первый раздел - теоретический и содержит общие сведения о методе Ньютона. Второй – это практическая часть. Здесь описывается метод Ньютона разобранный на конкретных примерах. Третий посвящён тестированию программы и анализу получившихся результатов. В заключении представлен вывод о проделанной работе.

    Цельюданной курсовой работы является программная реализация метода Ньютона для решения нелинейных уравнений.

    Для этого необходимо выполнить следующие задачи:

    1. Изучить необходимую литературу.

    2. Обзорно рассмотреть существующие методы по решению нелинейных уравнений.

    3. Изучить метод Ньютона для решения нелинейных уравнений.

    4. Рассмотреть решение нелинейных уравнений методом Ньютона на конкретных примерах.

    5. Разработать программу для решения нелинейных уравнений методом Ньютона.

    6. Проанализировать получившиеся результаты.

    Рассмотрим задачу нахождения корней нелинейного уравнения

    Корнями уравнения (1) называются такие значения х, которые при подстановке обращают его в тождество. Только для простейших уравнений удается найти решение в виде формул, т.е. аналитическом виде. Чаще приходится решать уравнения приближенными методами, наибольшее распространение среди которых, в связи с появлением компьютеров, получили численные методы.

    Алгоритм нахождения корней приближенными методами можно разбить на два этапа. На первом изучается расположение корней и проводится их разделение. Находится область , в которой существует корень уравнения или начальное приближение к корню x 0 . Простейший способ решения этой задачи является исследование графика функции f(x) . В общем же случае для её решения необходимо привлекать все средства математического анализа.

    Существование на найденном отрезке , по крайней мере, одного корня уравнения (1) следует из условия Больцано:

    f(a)*f(b)<0 (2)

    При этом подразумевается, что функция f(x) непрерывна на данном отрезке. Однако данное условие не отвечает на вопрос о количестве корней уравнения на заданном отрезке . Если же требование непрерывности функции дополнить ещё требованием её монотонности, а это следует из знакопостоянства первой производной , то можно утверждать о существовании единственного корня на заданном отрезке.

    При локализации корней важно так же знание основных свойств данного типа уравнения. К примеру, напомним, некоторые свойства алгебраических уравнений:

    где вещественные коэффициенты.

    а) Уравнение степени n имеет n корней, среди которых могут быть как вещественные, так и комплексные. Комплексные корни образуют комплексно-сопряженные пары и, следовательно, уравнение имеет четное число таких корней. При нечетном значении n имеется, по меньшей мере, один вещественный корень.

    б) Число положительных вещественных корней меньше или равно числа переменных знаков в последовательности коэффициентов . Замена х на –х в уравнении (3) позволяет таким же способом оценить число отрицательных корней.

    На втором этапе решения уравнения (1), используя полученное начальное приближение, строится итерационный процесс, позволяющий уточнять значение корня с некоторой, наперед заданной точностью . Итерационный процесс состоит в последовательном уточнении начального приближения. Каждый такой шаг называется итерацией. В результате процесса итерации находится последовательность приближенных значений корней уравнения . Если эта последовательность с ростом n приближается к истинному значению корня x , то итерационный процесс сходится. Говорят, что итерационный процесс сходится, по меньшей мере, с порядком m, если выполнено условие:

    , (4)


    где С>0 некоторая константа. Если m=1 , то говорят о сходимости первого порядка; m=2 - о квадратичной, m=3 - о кубической сходимостях.

    Итерационные циклы заканчиваются, если при заданной допустимой погрешности выполняются критерии по абсолютным или относительным отклонениям:

    или малости невязки:

    Эта работа посвящена изучению алгоритма решения нелинейных уравнений с помощью метода Ньютона.

    1.1 Обзор существующих методов решения нелинейных уравнений

    Существует много различных методов решения нелинейных уравнений, некоторые из них представлены ниже:

    1)Метод итераций . При решении нелинейного уравнения методом итераций воспользуемся записью уравнения в виде x=f(x). Задаются начальное значение аргумента x 0 и точность ε. Первое приближение решения x 1 находим из выражения x 1 =f(x 0), второе - x 2 =f(x 1) и т.д. В общем случае i+1 приближение найдем по формуле xi+1 =f(xi). Указанную процедуру повторяем пока |f(xi)|>ε. Условие сходимости метода итераций |f"(x)|<1.

    2)Метод Ньютона . При решении нелинейного уравнения методом Ньтона задаются начальное значение аргумента x 0 и точность ε. Затем в точке(x 0 ,F(x 0)) проводим касательную к графику F(x) и определяем точку пересечения касательной с осью абсцисс x 1 . В точке (x 1 ,F(x 1)) снова строим касательную, находим следующее приближение искомого решения x 2 и т.д. Указанную процедуру повторяем пока |F(xi)| > ε. Для определения точки пересечения (i+1) касательной с осью абсцисс воспользуемся следующей формулой x i+1 =x i -F(x i)\ F’(x i). Условие сходимости метода касательных F(x 0)∙F""(x)>0, и др.

    3). Метод дихотомии. Методика решения сводится к постепенному делению начального интервала неопределённости пополам по формуле С к =а к +в к /2.

    Для того чтобы выбрать из двух получившихся отрезков необходимый, надо находить значение функции на концах получившихся отрезков и рассматривать тот на котором функция будет менять свой знак, то есть должно выполняться условие f (а к)* f (в к)<0.

    Процесс деления отрезка проводится до тех пор, пока длина текущего интервала неопределённости не будет меньше заданной точности, то есть

    в к – а к < E. Тогда в качестве приближенного решения уравнения будет точка, соответствующая середине интервала неопределённости.

    4). Метод хорд . Идея метода состоит в том, что на отрезке строится хорда стягивающая концы дуги графика функции y=f(x), а точка c, пересечения хорды с осью абсцисс, считается приближенным значением корня

    c = a - (f(a)Ч (a-b)) / (f(a) - f(b)),

    c = b - (f(b)Ч (a-b)) / (f(a) - f(b)).

    Следующее приближение ищется на интервале или в зависимости от знаков значений функции в точках a,b,c

    x* О , если f(с)Ч f(а) > 0 ;

    x* О , если f(c)Ч f(b) < 0 .


    Если f"(x) не меняет знак на , то обозначая c=x 1 и считая начальным приближением a или b получим итерационные формулы метода хорд с закрепленной правой или левой точкой.

    x 0 =a, x i+1 = x i - f(x i)(b-x i) / (f(b)-f(x i), при f "(x)Ч f "(x) > 0 ;

    x 0 =b, x i+1 = x i - f(x i)(x i -a) / (f(x i)-f(a), при f "(x)Ч f "(x) < 0 .

    Сходимость метода хорд линейная.

    1.2 Алгоритм метода Ньютона

    Построим эффективный алгоритм вычисления корней уравнения. Пусть задано начальное приближение . Вычислим в этой точке значение функции и её производной . Рассмотрим графическую иллюстрацию метода:

    .


    (8)

    Продолжая этот процесс, получим известную формулу Ньютона:

    (9)

    Приведем простейшую рекурсивную подпрограмму-функцию:

    function X_Newt(x,eps:real):real;

    y:=x-f(x)/f1(x);

    if abs(f(x)) > eps

    then X_Newt:=X_Newt(y,eps)

    Метод Ньютона (касательных) характеризуется квадратичной скоростью сходимости, т.е. на каждой итерации удваивается число верных знаков. Однако этот метод не всегда приводит к нужному результату. Рассмотрим этот вопрос подробнее.

    Преобразуем уравнение (1) к эквивалентному уравнению вида:

    В случае метода касательных . Если известно начальное приближение к корню x=x 0 , то следующее приближение найдем из уравнения x 1 =g(x 0), далее x 2 =g(x 1),... Продолжая этот процесс, получим рекуррентную формулу метода простой итерации

    x k+1 =g(x k) (11)

    Итерационный процесс продолжается до тех пор, пока не будут выполнены условия (5-7).

    Всегда ли описанный вычислительный процесс приводит к искомому решению? При каких условиях он будет сходящимся? Для ответа на эти вопросы опять обратимся к геометрической иллюстрации метода.

    Корень уравнения представляется точкой пересечения функций y=x и y=g(x). Как видно из рис. 3(а), если выполняется условие , то процесс сходится, иначе – расходится (рис3(б)).


    Итак, для того чтобы итерационный процесс был сходящимся и приводил к искомому результату, требуется выполнение условия:

    Переход от уравнения f(x)=0 к уравнению х=g(x) можно осуществлять различными способами. При этом важно, чтобы выбранная функция g(x) удовлетворяла условию (12). К примеру, если функцию f(x) умножить на произвольную константу q и добавить к обеим частям уравнения (1) переменную х, то g(x)=q*f(x)+x . Выберем константу q такой, чтобы скорость сходимости алгоритма была самой высокой. Если 1

    Метод Ньютона обладает высокой скоростью сходимости, однако он не всегда сходится. Условие сходимости , где g(x) = x – f(x)/ f’(x), сводится к требованию .

    В практических расчетах важно выбирать начальное значение как можно ближе к искомому значению, а в программе устанавливать «предохранитель от зацикливания».

    Недостатком метода является и то, что на каждом шаге необходимо вычислять не только функцию, но и ее производную. Это не всегда удобно. Одна из модификаций метода Ньютона - вычисление производной только на первой итерации:

    (13)

    Другой метод модификации – замена производной конечной разностью

    (14)

    Тогда (15)

    Геометрический смысл такого изменения алгоритма Ньютона состоит в том, что от касательной мы приходим к секущей. Метод секущих уступает методу Ньютона в скорости сходимости, но не требует вычисления производной. Заметим, что начальные приближения в методе секущих могут располагаться как с разных сторон от корня, так и с одной стороны.

    Запишем в общем виде алгоритм метода Ньютона.

    1. Задать начальное приближение х (0) так, чтобы выполнилось условие

    f(x (0))*f’’(x (0))>0. (16)

    Задать малое положительное число ε , как точность вычислений. Положить к = 0.

    2. Вычислить х (к+1) по формуле (9) :


    .

    3. Если | x (k+1) - x (k) | < ε, то процесс вычисления прекратить и положить х* = x (k+1) . Иначе увеличить к на 1 (к = к + 1) и перейти к пункту 2.

    Решим вручную несколько нелинейных уравнений методом Ньютона, а потом сверим результаты с теми, которые получатся при реализации программного продукта.

    Пример 1

    sin x 2 + cosx 2 - 10x. = 0.

    F’(x)=2x cosx 2 - 2x sinx 2 - 10.

    F’’(x)=2cosx 2 - 4x 2 sinx 2 - 2sinx 2 - 4x 2 cosx 2 = cosx 2 (2-4x 2) - sinx 2 (2+4x 2).


    Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0)) * f’’(x (0)) > 0.

    Пусть x (0) = 0, 565, тогда f(0. 565)*f’’(0. 565) = -4. 387 * (-0. 342) = 1. 5 > 0,

    Условие выполняется, значит берём x (0) = 0, 565.

    k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
    0 0. 565 -4. 387 -9. 982 0. 473
    1 0. 092 0. 088 -9. 818 0. 009
    2 0. 101 0. 000 -9. 800 0. 000
    3 0. 101

    Отсюда следует, что корень уравнения х = 0, 101.

    Пример 2

    Решить уравнение методом Ньютона.

    cos x – e -x2/2 + x - 1 = 0

    Вычисления производить с точностью ε = 0, 001.

    Вычислим первую производную функции.

    F’(x) = 1 – sin x + x*e -x2/2 .

    Теперь вычислим вторую производную от функции.

    F’’(x) = e -x2/2 *(1-x 2) – cos x.

    Построим приближённый график данной функции.

    Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0)) * f’’(x (0)) > 0.

    Пусть x (0) = 2, тогда f(2)*f’’(2) = 0. 449 * 0. 010 = 0.05 > 0,

    Условие выполняется, значит берём x (0) = 2.

    Теперь составим таблицу значений, для решения данного уравнения.

    k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
    0 2 0. 449 0. 361 1. 241
    1 -0. 265 0. 881 0. 881 0. 301
    2 -0. 021 0. 732 0. 732 0. 029
    3 0. 000 0. 716 0. 716 0. 000
    4 1. 089

    Отсюда следует, что корень уравнения х = 1. 089.

    Пример 3

    Решить уравнение методом Ньютона.

    Вычисления производить с точностью ε = 0, 001.

    Вычислим первую производную функции.

    F’(x) = 2*x + e -x .

    Теперь вычислим вторую производную от функции.

    F’’(x) = 2 - e -x .

    Построим приближённый график данной функции.


    Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0)) * f’’(x (0)) > 0.

    Пусть x (0) = 1, тогда f(2)*f’’(2) = 0. 632 * 1, 632 = 1, 031 > 0,

    Теперь составим таблицу значений, для решения данного уравнения.

    k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
    0 1, 000 0, 632 2, 368 0, 267
    1 0, 733 0, 057 1, 946 0, 029
    2 0, 704 0, 001 1, 903 0, 001
    3 0, 703

    Отсюда следует, что корень уравнения х = 0, 703.

    Решить уравнение методом Ньютона.

    cos x –e -x/2 +x-1=0.

    Вычислим первую производную функции.


    F’(x) = -sin x + e -x/2 /2+1.

    Теперь вычислим вторую производную от функции.

    F’’(x) = -cos x - e -x/2 /4.

    Построим приближённый график данной функции.

    Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0)) * f’’(x (0)) > 0.

    Пусть x (0) = 1, тогда f(2)*f’’(2) = -0. 066 * (-0. 692) = 0. 046 > 0,

    Условие выполняется, значит берём x (0) = 1.

    Теперь составим таблицу значений, для решения данного уравнения.

    k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
    0 1, 000 -0. 066 0. 462 0. 143
    1 1. 161 -0. 007 0. 372 0. 018
    2 1. 162 0. 0001. 0. 363 0. 001
    3 1. 162

    Отсюда следует, что корень уравнения х = 1. 162.

    Пример 5

    Решить уравнение методом Ньютона.

    2+e x - e -x =0.

    Вычислим первую производную функции.

    F’(x) = e x +e -x .

    Теперь вычислим вторую производную от функции.

    F’’(x) = e x -e -x .

    Построим приближённый график данной функции.

    Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0)) * f’’(x (0)) > 0.

    Пусть x (0) = 1, тогда f(2)*f’’(2) = 0. 350 * 2, 350 = 0. 823 > 0,

    Условие выполняется, значит берём x (0) = 1.

    Теперь составим таблицу значений, для решения данного уравнения.

    k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
    0 1, 000 0, 350 3, 086 0, 114
    1 0, 886 0, 013 2, 838 0, 005
    2 0, 881 0, 001 2, 828 0, 000
    3 0, 881

    Отсюда следует, что корень уравнения х = 0, 881.

    3.1 Описание программы

    Данная программа создана для работы в текстовом и графическом режиме. Она состоит из модуля Graph, Crt, трёх функций и трёх процедур.

    1. модуль Crt предназначен для обеспечения контроля над текстовыми режимами экрана, расширенными кодами клавиатуры, цветами, окнами и звуком;

    2. модуль Graph предназначен для обеспечения контроля над графическими объектами;

    3. procedure GrafInit - инициализирует графический режим;

    4. function VF – вычисляет значение функции;

    5. function f1 – вычисляет значение первой производной функции;

    6. function X_Newt – реализует алгоритм решения уравнения методом Ньютона.

    7. procedure FGraf – реализует построение графика заданной функции f(x);

    Ots=35 - константа, определяющая количество точек для отступа от границ монитора;

    fmin, fmax – максимальные и минимальные значения функции;

    SetColor(4) – процедура, которая устанавливает текущий цвет графического объекта, используя палитру, в данном случае это красный цвет;

    SetBkColor(9) – процедура, которая устанавливает текущий цвет фона, используя палитру, в данном случае – это светло-синий цвет.

    8. Procedure MaxMinF – вычислят максимальные и минимальные значения функции f(x).

    Line – процедура, которая рисует линию из точки с координатами (x1, у1) в точку с координатами (х2, у2);

    MoveTo – процедура, перемещающая указатель (СР) в точку с координатами (х, у);

    TextColor(5) – процедура, устанавливающая текущий цвет символов, в данном случае – это розовый;

    Outtexty(х, у, ‘строка’) – процедура, которая выводит строку, начиная с позиции (х, у)

    CloseGraph – процедура, закрывающая графическую систему.

    3.2 Тестирование программы

    Для тестирования программы возьмем те примеры, которые решали в практической части работы, чтобы сверить результаты и проверить правильность работы программы.

    1) sin x 2 + cosx 2 - 10x. = 0.

    Введите а = -1

    Введите b=1

    = [-1, 1]

    {вывод графика функции}


    Получим: х=0, 0000002

    2) cos x – e -x2/2 + x - 1 = 0.

    Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке .

    Введите а = -3

    Введите b=3

    = [-3, 3]

    {вывод графика функции}

    Корень уравнения, найденный методом Ньютона:

    сделаем проверку, подставив полученный ответ в уравнение.

    Получим: х=-0, 0000000

    3) x 2 - e -x = 0.

    Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке .

    Введите а = -1

    Введите b=1

    = [-1, 1]

    Введите точность вычисления eps=0. 01

    {вывод графика функции}

    Корень уравнения, найденный методом Ньютона:

    сделаем проверку, подставив полученный ответ в уравнение.

    Получим: х=0, 0000000

    4) cos x –e -x/2 +x-1=0.

    Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке .

    Введите а = -1,5

    Введите b=1,5

    = [-1,5, 1,5 ]

    Введите точность вычисления eps=0. 001

    {вывод графика функции}

    Корень уравнения, найденный методом Ньютона:


    сделаем проверку, подставив полученный ответ в уравнение.

    Получим: х=0, 0008180

    5) -2+e x - e -x =0.

    Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке .

    Введите а = -0,9

    Введите b=0,9

    = [-0,9, 0,9]

    Введите точность вычисления eps=0. 001

    {вывод графика функции}

    Корень уравнения, найденный методом Ньютона:

    Сделаем проверку, подставив полученный ответ в уравнение.

    Целью работы было создать программу, которая вычисляет корень нелинейного уравнения методом Ньютона. Исходя из этого, можно сделать вывод, что цель достигнута, так как для ее осуществления были решены следующие задачи:

    1.Изучена необходимая литература.

    2.Обзорно рассмотрены существующие методы по решению нелинейных уравнений.

    3.Изучен метод Ньютона для решения нелинейных уравнений.

    4.Рассмотрено решение нелинейных уравнений методом Ньютона на примере.

    5.Проведены тестирование и отладка программы.

    Список используемой литературы

    1. Б.П. Демидович, И.А Марон. Основы вычислительной математики. – Москва, изд. «Наука»; 1970.

    2. В.М. Вержбицкий. Численные методы (линейная алгебра и нелинейные уравнения). – Москва, «Высшая школа»; 2000.

    3. Н.С.Бахвалов, А.В.Лапин, Е.В.Чижонков. Численные методы в задачах и упражнениях. – Москва, «Высшая школа»; 2000.

    4. Мэтьюз, Джон, Г.,Финк, Куртис, Д. Численные методы MATLAB, 3-е издание.- Москва, «Вильяс»; 2001.


    © 2024
    artistexpo.ru - Про дарение имущества и имущественных прав