30.09.2019

Вариационные ряды. средние величины. стандартное отклонение. средняя ошибка средней арифметической. Вариационные ряды и их виды


Вариационный ряд - это статистический ряд, показывающий распределение изучаемого явления по величине какого-либо количественного признака. Например, больных по возрасту, по срокам лечения, новорожденных по весу и т.п.

Варианта - отдельные значения признака, по которому проводится группировка (обозначается V ) .

Частота- число, показывающее, как часто встречается та или иная варианта (обозначается P ) . Сумма всех частот показывает общее число наблюдений и обозначается n . Разность между наибольшей и наименьшей вариантой вариационного ряда называется размахом или амплитудой .

Различают вариационные ряды:

1. Прерывные (дискретные) и непрерывные.

Ряд считается непрерывным, если группировочный признак может выражаться дробными величинами (вес, рост т.п.), прерывным, если группировочный признак выражается только целым числом (дни нетрудоспособности, число ударов пульса и т.п.).

2.Простые и взвешенные.

Простой вариационный ряд представляет собой ряд, в котором количественное значение варьирующего признака встречается один раз. Во взвешенном вариационном ряду количественные значения варьирующего признака повторяются с определённой частотой.

3. Сгруппированные (интервальные) и несгруппированые.

Сгруппированный ряд имеет варианты, объединённые в группы, объединяющие их по величине в пределах определённого интервала. В несгруппированном ряду каждой отдельной варианте соответствует определённая частота.

4. Четные и нечетные.

В чётных вариационных рядах сумма частот или общее число наблюдений выражено чётным числом, в нечётных ― нечётным.

5. Симметричные и асимметричные.

В симметричном вариационном ряду все виды средних величин совпадают или очень близки (мода, медиана, среднее арифметическое).

В зависимости от характера изучаемых явлений, от конкретных задач и целей статистического исследования, а также от содержания исходного материала, в санитарной статистике применяются следующие виды средних величин:

структурные средние (мода, медиана);

средняя арифметическая;

средняя гармоническая;

средняя геометрическая;

средняя прогрессивная.

Мода (М о ) - величина варьирующего признака, которая более часто встречается в изучаемой совокупности т.е. варианта, соответствующая наибольшей частоте. Находят ее непосредственно по структуре вариационного ряда, не прибегая к каким-либо вычислениям. Она обычно является величиной очень близкой к средней арифметической и весьма удобна в практической деятельности.

Медиана (М е ) - делящая вариационный ряд (ранжированный, т.е. значения вариант располагаются в порядке возрастания или убывания) на две равные половины. Медиана вычисляется при помощи так называемого нечетного ряда, который получают путем последовательного суммирования частот. Если сумма частот соответствует четному числу, тогда за медиану условно принимают среднюю арифметическую из двух средних значений.

Мода и медиана применяются в случае незамкнутой совокупности, т.е. когда наибольшая или наименьшая варианты не имеют точной количественной характеристики (например, до 15 лет, 50 и старше и т.п.). В этом случае среднюю арифметическую (параметрические характеристики) рассчитать нельзя.

Средня я арифметическая - самая распространенная величина. Средняя арифметическая обозначается чаще через М .

Различают среднюю арифметическую простую и взвешенную.

Средняя арифметическая простая вычисляется:

― в тех случаях, когда совокупность представлена простым перечнем знаний признака у каждой единицы;

― если число повторений каждой варианты нет возможности определить;

― если числа повторений каждой варианты близки между собой.

Средняя арифметическая простая исчисляется по формуле:

где V - индивидуальные значения признака; n - число индивидуальных значений;
- знак суммирования.

Таким образом, простая средняя представляет собой отношение суммы вариант к числу наблюдений.

Пример: определить среднюю длительность пребывания на койке 10 больных пневмонией:

16 дней - 1 больной; 17–1; 18–1; 19–1; 20–1; 21–1; 22–1; 23–1; 26–1; 31–1.

койко-дня.

Средняя арифметическая взвешенная исчисляется в тех случаях, когда индивидуальные значения признака повторяются. Ее можно вычислять двояким способом:

1. Непосредственным (среднеарифметическим или прямым способом) по формуле:

,

где P - частота (число случаев) наблюдений каждой варианты.

Таким образом, средняя арифметическая взвешенная представляет собой отношение суммы произведений вариант на частоты к числу наблюдений.

2. С помощью вычисления отклонений от условной средней (по способу моментов).

Основой для вычисления взвешенной средней арифметической является:

― сгруппированный материал по вариантам количественного признака;

― все варианты должны располагаться в порядке возрастания или убывания величины признака (ранжированный ряд).

Для вычисления по способу моментов обязательным условием является одинаковый размер всех интервалов.

По способу моментов средняя арифметическая вычисляется по формуле:

,

где М о - условная средняя, за которую чаще принимают величину признака, соответствующую наибольшей частоте, т.е. которая чаще повторяется (Мода).

i - величина интервала.

a - условное отклонение от условий средней, представляющее собой последовательный ряд чисел (1, 2 и т.д.) со знаком + для вариант больших условной средней и со знаком–(–1, –2 и т.д.) для вариант, которые ниже условной средней. Условное же отклонение от варианты, принятой за условную среднюю равно 0.

P - частоты.

- общее число наблюдений или n.

Пример: определить средний рост мальчиков 8 лет непосредственным способом (таблица1).

Т а б л и ц а 1

Рост в см

мальчиков P

Центральная

варианта V

Центральная варианта ― середина интервала ― определяется как полу сумма начальных значений двух соседних групп:

;
и т.д.

Произведение VP получают путем умножения центральных вариант на частоты
;
и т.д. Затем полученные произведения складывают и получают
, которую делят на число наблюдений (100) и получают среднюю арифметическую взвешенную.

см.

Эту же задачу решим по способу моментов, для чего составляется следующая таблица 2:

Т а б л и ц а 2

Рост в см (V)

мальчиков P

n=100

В качестве М о принимаем 122, т.к. из 100 наблюдений у 33 человек рост был 122см. Находим условные отклонения (a) от условной средней в соответствии с вышесказанным. Затем получаем произведение условных отклонений на частоты (aP) и суммируем полученные величины (
). В итоге получится 17. Наконец, данные подставляем в формулу:

При изучении варьирующего признака нельзя ограничиваться только вычислением средних величин. Необходимо вычислять и показатели, характеризующие степень разнообразия изучаемых признаков. Величина того или иного количественного признака неодинакова у всех единиц статистической совокупности.

Характеристикой вариационного ряда является среднее квадратичное отклонение (), которое показывает разброс (рассеивание) изучаемых признаков относительно средней арифметической, т.е. характеризует колеблемость вариационного ряда. Оно может определяться непосредственным способом по формуле:

Среднее квадратичное отклонение равняется квадратному корню из суммы произведений квадратов отклонений каждой варианты от средней арифметической (V–M) 2 на свои частоты деленной на сумму частот (
).

Пример вычисления: определить среднее число больничных листов, выдаваемых в поликлинике за день (таблица 3).

Т а б л и ц а 3

Число больничных

листов, выданных

врачом за день (V)

Число врачей (Р)

;

В знаменателе при числе наблюдений менее 30 необходимо от
отнимать единицу.

Если ряд сгруппирован с равными интервалами, тогда можно определить среднее квадратичное отклонение по способу моментов:

,

где i - величина интервала;

- условное отклонение от условной средней;

P - частоты вариант соответствующих интервалов;

- общее число наблюдений.

Пример вычисления : Определить среднюю длительность пребывания больных на терапевтической койке (по способу моментов) (таблица 4):

Т а б л и ц а 4

Число дней

пребывания на койке (V)

больных (Р)

;

Бельгийский статистик А. Кетле обнаружил, что вариации массовых явлений подчиняются закону распределения ошибок, открытому почти одновременно К. Гауссом и П. Лапласом. Кривая, отображающая это распределение, имеет вид колокола. По нормальному закону распределения колеблемость индивидуальных значений признака находится в пределах
, что охватывает 99,73% всех единиц совокупности.

Подсчитано, что если к средней арифметической прибавить и отнять 2, то в пределах полученных величин находится 95,45% всех членов вариационного ряда и, наконец, если к средней арифметической прибавить и отнять 1, то в пределах полученных величин будут находиться 68,27% всех членов данного вариационного ряда. В медицине с величиной
1связано понятие нормы. Отклонение от средней арифметической больше, чем на 1, но меньше, чем на 2является субнормальным, а отклонение больше, чем на 2ненормальным (выше или ниже нормы).

В санитарной статистике правило трех сигм применяется при изучении физического развития, оценке деятельности учреждений здравоохранения, оценке здоровья населения. Это же правило широко применяется в народном хозяйстве при определении стандартов.

Таким образом, среднее квадратичное отклонение служит для:

― измерения дисперсии вариационного ряда;

― характеристики степени разнообразия признаков, которые определяются коэффициентом вариации:

Если коэффициент вариации более 20% - сильное разнообразие, от 20 до 10% - среднее, менее 10% - слабое разнообразие признаков. Коэффициент вариации в известной мере является критерием надежности средней арифметической.

Вариационные ряды: определение, виды, основные характеристики. Методика расчета
моды, медианы, средней арифметической в медико-статистических исследованиях
(показать на условном примере).

Вариационный ряд – это ряд числовых значений изучаемого признака, отличающихся друг от друга по своей величине и расположенных в определенной последовательности(в восходящем или убывающем порядке). Каждое числовое значение ряда называют вариантой (V), а числа, показывающие, как часто встречается та или иная варианта в составе данного ряда, называется частотой (р).

Общее число случаев наблюдений, из которых вариационный ряд состоит, обозначают буквой n. Различие в значении изучаемых признаков называется вариацией. В случае если варьирующий признак не имеет количественной меры, вариацию называют качественной, а ряд распределения – атрибутивным (например, распределение по исходу заболевания, по состоянию здоровья и т.д.).

Если варьирующий признак имеет количественное выражение, такую вариацию называют количественной, а ряд распределения – вариационным.

Вариационные ряды делятся на прерывные и непрерывные – по характеру количественного признака, простые и взвешенные – по частоте встречаемости вариант.

В простом вариационном ряду каждая варианта встречается только один раз (р=1), во взвешенном – одна и та же варианта встречается несколько раз (р>1). Примеры таких рядов будут рассмотрены далее по тексту. Если количественный признак носит непрерывный характер, т.е. между целыми величинами имеются промежуточные дробные величины, вариационный ряд называется непрерывным.

Например: 10,0 – 11,9

14,0 – 15,9 и т.д.

Если количественный признак носит прерывный характер, т.е. отдельные его значения (варианты) отличаются друг от друга на целое число и не имеют промежуточных дробных значений, вариационный ряд называют прерывным или дискретным.

Используя данные предыдущего примера о частоте пульса

у 21 студентов, построим вариационный ряд (табл. 1).

Таблица 1

Распределение студентов-медиков по частоте пульса (уд/мин)

Таким образом, построить вариационный ряд – означает имеющиеся числовые значения (варианты) систематизировать, упорядочить, т.е. расположить в определенной последовательности (в восходящем или убывающем порядке) с соответствующими им частотами. В рассматриваемом примере варианты расположены в восходящем порядке и выражены в виде целых прерывных (дискретных) чисел, каждая варианта встречается несколько раз, т.е. мы имеем дело со взвешенным, прерывным или дискретным вариационным рядом.

Как правило, если число наблюдений в изучаемой нами статистической совокупности не превышает 30, то достаточно все значения изучаемого признака расположить в вариационном ряду в нарастающем, как в табл. 1, или убывающем порядке.

При большом количестве наблюдений (n>30) число встречающихся вариант может быть очень большим, в этом случае составляется интервальный или сгруппированный вариационный ряд, в котором для упрощения последующей обработки и выяснения характера распределения варианты объединены в группы.

Обычно число групповых вариант колеблется от 8 до 15.

Их должно быть не меньше 5, т.к. иначе это будет слишком грубое, чрезмерное укрупнение, что искажает общую картину варьирования и сильно сказывается на точности средних величин. При числе групповых вариант более 20-25 увеличивается точность вычисления средних величин, но существенно искажаются особенности варьирования признака и усложняется математическая обработка.

При составлении сгруппированного ряда необходимо учесть,

− группы вариант должны располагаться в определенном порядке (в восходящем или нисходящем);

− интервалы в группах вариант должны быть одинаковыми;

− значения границ интервалов не должны совпадать, т.к. неясно будет, в какие группы относить отдельные варианты;

− необходимо учитывать качественные особенности собираемого материала при установлении пределов интервалов (например, при изучении веса взрослых людей интервал 3-4 кг допустим, а для детей первых месяцев жизни он не должен превышать 100 г.)

Построим сгруппированный (интервальный) ряд, характеризующий данные о частоте пульса (число ударов в минуту) у 55 студентов-медиков перед экзаменом: 64, 66, 60, 62,

64, 68, 70, 66, 70, 68, 62, 68, 70, 72, 60, 70, 74, 62, 70, 72, 72,

64, 70, 72, 76, 76, 68, 70, 58, 76, 74, 76, 76, 82, 76, 72, 76, 74,

79, 78, 74, 78, 74, 78, 74, 74, 78, 76, 78, 76, 80, 80, 80, 78, 78.

Для построения сгруппированного ряда необходимо:

1. Определить величину интервала;

2. Определить середину, начало и конец групп вариант вариационного ряда.

● Величина интервала (i) определяется по числу предполагаемых групп (r), количество которых устанавливается в зависимости от числа наблюдений (n) по специальной таблице

Число групп в зависимости от числа наблюдений:

В нашем случае, для 55 студентов, можно составить от 8 до 10 групп.

Величина интервала (i) определяется по следующей формуле –

i = V max-V min/r

В нашем примере величина интервала равна 82- 58/8= 3.

Если величина интервала представляет собой дробное число, полученный результат следует округлить до целого числа.

Различают несколько видов средних величин:

● средняя арифметическая,

● средняя геометрическая,

● средняя гармоническая,

средняя квадратическая,

● средняя прогрессивная,

● медиана

В медицинской статистике наиболее часто пользуются средними арифметическими величинами.

Средняя арифметическая величина (М) является обобщающей величиной, которая определяет то типичное, что характерно для всей совокупности. Основными способами расчета М являются: среднеарифметический способ и способ моментов (условных отклонений).

Среднеарифметический способ применяется для вычисления средней арифметической простой и средней арифметической взвешенной. Выбор способа расчета средней арифметической величины зависит от вида вариационного ряда. В случае простого вариационного ряда, в котором каждая варианта встречается только один раз, определяется средняя арифметическая простая по формуле:

где: М – средняя арифметическая величина;

V – значение варьирующего признака (варианты);

Σ – указывает действие – суммирование;

n – общее число наблюдений.

Пример расчета средней арифметической простой. Частота дыхания (число дыхательных движений в минуту) у 9 мужчин в возрасте 35 лет: 20, 22, 19, 15, 16, 21, 17, 23, 18.

Для определения среднего уровня частоты дыхания у мужчин в возрасте 35 лет необходимо:

1. Построить вариационный ряд, расположив все варианты в возрастающем или убывающем порядке Мы получили простой вариационный ряд, т.к. значения вариант встречаются только один раз.

M = ∑V/n = 171/9 = 19 дыхательных движений в минуту

Вывод. Частота дыхания у мужчин в возрасте 35 лет в среднем равна 19 дыхательным движениям в минуту.

Если отдельные значения вариант повторяются, незачем выписывать в линию каждую варианту, достаточно перечислить встречающиеся размеры вариант (V) и рядом указать число их повторений (р). такой вариационный ряд, в котором варианты как бы взвешиваются по числу соответствующих им частот, носит название – взвешенный вариационный ряд, а рассчитываемая средняя величина – средней арифметической взвешенной.

Средняя арифметическая взвешенная определяется по формуле: M= ∑Vp/n

где n – число наблюдений, равное сумме частот – Σр.

Пример расчета средней арифметической взвешенной.

Длительность нетрудоспособности (в днях) у 35 больных острыми респираторными заболеваниями (ОРЗ), лечившихся у участкового врача на протяжении I-го квартала текущего года составила: 6, 7, 5, 3, 9, 8, 7, 5, 6, 4, 9, 8, 7, 6, 6, 9, 6, 5, 10, 8, 7, 11, 13, 5, 6, 7, 12, 4, 3, 5, 2, 5, 6, 6, 7 дней.

Методика определения средней длительности нетрудоспособности у больных с ОРЗ следующая:

1. Построим взвешенный вариационный ряд, т.к. отдельные значения вариант повторяются несколько раз. Для этого можно расположить все варианты в возрастающем или убывающем порядке с соответствующими им частотами.

В нашем случае варианты расположены в возрастающем порядке

2. Рассчитаем среднюю арифметическую взвешенную по формуле: M = ∑Vp/n = 233/35 = 6,7 дней

Распределение больных с ОРЗ по длительности нетрудоспособности:

Длительность нетрудоспособности (V) Число больных (p) Vp
∑p = n = 35 ∑Vp = 233

Вывод. Длительность нетрудоспособности у больных с острыми респираторными заболеваниями составила в среднем 6,7 дней.

Мода (Мо) – наиболее часто встречающаяся варианта в вариационном ряду. Для распределения, представленного в таблице, моде соответствует варианта, равная 10, она встречается чаще других – 6 раз.

Распределение больных по длительности пребывания на больничной койке (в днях)

V
p

Иногда точную величину моды установить трудно, поскольку в изучаемых данных может существовать несколько наблюдений, встречающихся «наиболее часто».

Медиана (Ме) – непараметрический показатель, делящий вариационный ряд на две равные половины: в обе стороны от медианы располагается одинаковое число вариант.

Например, для распределения, указанного в таблице, медиана равна 10, т.к. по обе стороны от этой величины располагается по 14 вариант, т.е. число 10 занимает центральное положение в этом ряду и является его медианой.

Учитывая, что число наблюдений в этом примере четное (n=34), медиану можно определить таким образом:

Me = 2+3+4+5+6+5+4+3+2/2 = 34/2 = 17

Это означает, что середина ряда приходится на семнадцатую по счету варианту, которой соответствует медиана, равная 10. Для распределения, представленного в таблице, средняя арифметическая равна:

M = ∑Vp/n = 334/34 = 10,1

Итак, для 34 наблюдений из табл. 8, мы получили: Мо=10, Ме=10, средняя арифметическая (М) равна 10,1. В нашем примере все три показателя оказались равными или близкими друг к другу, хотя они совершенно различны.

Средняя арифметическая является результативной суммой всех влияний, в формировании ее принимают участие все без исключения варианты, в том числе и крайние, часто нетипичные для данного явления или совокупности.

Мода и медиана, в отличие от средней арифметической, не зависят от величины всех индивидуальных значений варьирующего признака (значений крайних вариант и степени рассеяния ряда). Средняя арифметическая характеризует всю массу наблюдений, мода и медиана – основную массу

Ряды, построенные по количественному признаку , называются вариационным .

Ряды распределений состоят из вариантов (значений признака) и частот (численности групп). Частоты, выраженные в виде относительных величин (долей, процентов) называются частостями . Сумма всех частот называется объёмом ряда распределения.

По виду ряды распределения делятся на дискретные (построены по прерывным значениям признака) и интервальные (построены на непрерывных значениях признака).

Вариационный ряд представляет собой две колонки (или строки); в одной из которых приводятся отдельные значения варьирующего признака, именуемые вариантами и обозначаемые Х; а в другой – абсолютные числа, показывающие сколько раз (как часто) встречается каждый вариант. Показатели второй колонки называются частотами и условно обозначают через f. Еще раз заметим, что во второй колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуются частостями и условно обозначают через ω Сумма всех частостей в этом случае равна единице. Однако частоты можно выражать и в процентах, и тогда сумма всех частостей дает 100%.

Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд именуют дискретным.

Для непрерывных признаков вариационные ряды строятся как интервальные , то есть значения признака в них выражаются «от… до …». При этом минимальны значения признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей.

Интервальные вариационные ряды строят и для дискретных признаков, варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами.

Рассмотрим как определяется величина равных интервалов. Введем следующие обозначения:

i – величина интервала;

- максимальное значение признака у единиц совокупности;

– минимальное значение признака у единиц совокупности;

n – число выделяемых групп.

, если n известно.

Если число выделяемых групп трудно заранее определить, то для расчета оптимальной величины интервала при достаточном объеме совокупности может быть рекомендована формула, предложенная Стерджессом в 1926 году:

n = 1+ 3.322 lg N, где N – число единиц в совокупности.

Величина неравных интервалов определяется в каждом отдельном случае с учетом особенностей объекта изучения.

Статистическим распределением выборки называют перечень ва­риант и соответствующих им частот (или относительных частот).

Статистическое распределение выборки можно задать в виде таблицы, в первой графе которой располагаются варианты, а во второй - соот­ветствующие этим вариантам частоты ni , или относительные частоты Pi .

Статистическое распределение выборки

Интервальными называются вариационные ряды, в которых значе­ния признаков, положенных в основу их образования, выражены в определенных пределах (интервалах). Частоты в этом случае относятся, не к отдельным значениям признака, а ко всему интервалу.

Интервальные ряды распределения строятся по непрерывным количе­ственным признакам, а также по дискретным признакам, варьирующим в значительных пределах.

Интервальный ряд можно представить статистическим распределени­ем выборки с указанием интервалов и соответствующих им частот. При этом в качестве частоты интервала принимают сумму частот вариант, по­павших в этот интервал.

При группировке по количественным непрерывным признакам важ­ное значение имеет определение размера интервала.

Кроме выборочной средней и выборочной дисперсии применяются и другие характеристики вариационного ряда.

Модой называют варианту, которая имеет наибольшую частоту.

В результате освоения дайной главы студент должен: знать

  • показатели вариации и их взаимосвязь;
  • основные законы распределения признаков;
  • сущность критериев согласия; уметь
  • рассчитывать показатели вариации и критерии согласия;
  • определять характеристики распределений;
  • оценивать основные числовые характеристики статистических рядов распределения;

владеть

  • методами статистического анализа рядов распределения;
  • основами дисперсионного анализа;
  • приемами проверки статистических рядов распределения на соответствие основным законам распределения.

Показатели вариации

При статистическом исследовании признаков различных статистических совокупностей большой интерес представляет изучение вариации признака отдельных статистических единиц совокупности, а также характера распределения единиц по данному признаку. Вариация - это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение. По степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию. Показатели вариации используются для характеристики и упорядочения статистических совокупностей.

Результаты сводки и группировки материалов статистического наблюдения, оформленные в виде статистических рядов распределения, представляют собой упорядоченное распределение единиц изучаемой совокупности на группы по группировочному (варьирующему) признаку. Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по профессии, по полу, по цвету и т.д.). Если ряд распределения построен по количественному признаку, то такой ряд называют вариационным (распределение по росту, весу, по размеру заработной платы и т.д.). Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, подсчитать число единиц совокупности с этими значениями (частоту), результаты оформить в таблицу.

Вместо частоты варианта возможно применение ее отношения к общему объему наблюдений, которое называется частостью (относительной частотой).

Выделяют два вида вариационного ряда: дискретный и интервальный. Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести число работников на предприятии, тарифный разряд, количество детей в семье и т.д. Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака. Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака возможно построение интервального вариационного ряда. Таблица при построении интервального вариационного ряда также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота). Частота (частота повторения) - число повторений отдельного варианта значений признака. Интервалы могут быть закрытые и открытые. Закрытые интервалы ограничены с обеих сторон, т.е. имеют границу как нижнюю («от»), так и верхнюю («до»). Открытые интервалы имеют какую-либо одну границу: либо верхнюю, либо нижнюю. Если варианты расположены по возрастанию или убыванию, то ряды называются ранжированными.

Для вариационных рядов существует два типа вариантов частотных характеристик: накопленная частота и накопленная частость. Накопленная частота показывает, в скольких наблюдениях величина признака приняла значения меньше заданного. Накопленная частота определяется путем суммирования значений частоты признака по данной группе со всеми частотами предшествующих групп. Накопленная частость характеризует удельный вес единиц наблюдения, у которых значения признака не превосходят верхнюю границу дайной группы. Таким образом, накопленная частость показывает удельный вес вариант в совокупности, имеющих значение не больше данного. Частота, частость, абсолютная и относительная плотности, накопленные частота и частость являются характеристиками величины варианта.

Вариации признака статистических единиц совокупности, а также характер распределения изучаются с помощью показателей и характеристик вариационного ряда, к числу которых относятся средний уровень ряда, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия, коэффициенты осцилляции, вариации, асимметрии, эксцесса и др.

Для характеристики центра распределения применяются средние величины. Средняя представляет собой обобщающую статистическую характеристику, в которой получает количественное выражение типичный уровень признака, которым обладают члены изучаемой совокупности. Однако возможны случаи совпадения средних арифметических при разном характере распределения, поэтому в качестве статистических характеристик вариационных рядов рассчитываются так называемые структурные средние - мода, медиана, а также квантили, которые делят ряд распределения на равные части (квартили, децили, перцентили и т.д.).

Мода - это значение признака, которое встречается в ряду распределения чаще, чем другие его значения. Для дискретных рядов - это варианта, имеющая наибольшую частоту. В интервальных вариационных рядах с целью определения моды необходимо определить прежде всего интервал, в котором она находится, так называемый модальный интервал. В вариационном ряду с равными интервалами модальный интервал определяется по наибольшей частоте, в рядах с неравными интервалами - но наибольшей плотности распределения. Затем для определения моды в рядах с равными интервалами применяют формулу

где Мо - значение моды; х Мо - нижняя граница модального интервала; h - ширина модального интервала; / Мо - частота модального интервала; / Mo j - частота домодального интер- вала; / Мо+1 - частота послемодального интервала, а для ряда с неравными интервалами в данной формуле расчета вместо частот / Мо, / Мо, / Мо следует использовать плотности распределения Ум 0 _| , Ум 0> УМо+"

Если имеется единственная мода, то распределение вероятностей случайной величины называется унимодальным; если имеется более чем одна мода, оно называется многомодальным (полимодальным, мультимодальным), в случае двух мод - бимодальным. Как правило, многомодальность указывает, что исследуемое распределение не подчиняется закону нормального распределения. Для однородных совокупностей, как правило, характерны одновершинные распределения. Многовершинность свидетельствует также о неоднородности изучаемой совокупности. Появление двух и более вершин делает необходимой перегруппировку данных с целью выделения более однородных групп.

В интервальном вариационном ряду моду можно определить графически с помощью гистограммы. Для этого из верхних точек самого высокого столбца гистограммы до верхних точек двух смежных столбцов проводят две пересекающиеся линии. Затем из точки их пересечения опускают перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее перпендикуляру, является модой. Во многих случаях при характеристике совокупности в качестве обобщенного показателя отдается предпочтение моде, а не средней арифметической.

Медиана - это центральное значение признака, им обладает центральный член ранжированного ряда распределения. В дискретных рядах, чтобы найти значение медианы, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица, число делится на два. При четном числе единиц в ряду будет две медианные единицы, поэтому в этом случае медиана определяется как средняя из значений двух медианных единиц. Таким образом, медианой в дискретном вариационном ряду является значение, которое делит ряд на две части, содержащие одинаковое число вариантов.

В интервальных рядах после определения порядкового номера медианы отыскивается медиальный интервал по накопленным частотам (частостям), а затем при помощи формулы расчета медианы определяется значение самой медианы:

где Me - значение медианы; х Ме - нижняя граница медианного интервала; h - ширина медианного интервала; - сумма частот ряда распределения; /Д - накопленная частота домедианного интервала; / Ме - частота медианного интервала.

Медиану можно отыскать графически с помощью куму- ляты. Для этого на шкале накопленных частот (частостей) кумуляты из точки, соответствующей порядковому номеру медианы, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Далее из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее проведенной ординате (перпендикуляру), является медианой.

Медиана характеризуется следующими свойствами.

  • 1. Она не зависит от тех значений признака, которые расположены по обе стороны от нее.
  • 2. Она имеет свойство минимальности, которое заключается в том, что сумма абсолютных отклонений значений признака от медианы представляет собой минимальную величину по сравнению с отклонением значений признака от любой другой величины.
  • 3. При объединении двух распределений с известными медианами невозможно заранее предсказать величину медианы нового распределения.

Эти свойства медианы широко используются при проектировании расположения пунктов массового обслуживания - школ, поликлиник, автозаправочных станций, водозаборных колонок и т.д. Например, если в определенном квартале города предполагается построить поликлинику, то расположить ее целесообразнее в такой точке квартала, которая делит пополам не длину квартала, а число жителей.

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить симметричность распределения. Если х Me то имеет место правосторонняя асимметрия ряда. При нормальном распределении х - Me - Мо.

К. Пирсон на основе выравнивания различных типов кривых определил, что для умеренно асимметричных распределений справедливы такие приближенные соотношения между средней арифметической, медианой и модой:

где Me - значение медианы; Мо - значение моды; х арифм - значение средней арифметической.

Если возникает необходимость изучить структуру вариационного ряда более подробно, то вычисляют значения признака, аналогичные медиане. Такие значения признака делят все единицы распределения на равные численности, их называют квантилями или градиентами. Квантили подразделяются на квартили, децили, перцентили и т.п.

Квартили делят совокупность на четыре равные части. Первую квартиль вычисляют аналогично медиане по формуле расчета первой квартили, предварительно определив первый квартальный интервал:

где Qi - значение первой квартили; x Q ^ - нижняя граница первого квартильного интервала; h - ширина первого квартального интервала; /, - частоты интервального ряда;

Накопленная частота в интервале, предшествующем первому квартильиому интервалу; Jq { - частота первого квартильного интервала.

Первая квартиль показывает, что 25% единиц совокупности меньше ее значения, а 75% - больше. Вторая квартиль равна медиане, т.е. Q 2 = Me.

По аналогии рассчитывают третью квартиль, предварительно отыскав третий квартальный интервал:

где - нижняя граница третьего квартильного интервала; h - ширина третьего квартильного интервала; /, - частоты интервального ряда; /X" - накопленная частота в интервале, предшествующем

г

третьему квартильиому интервалу; Jq - частота третьего квартильного интервала.

Третья квартиль показывает, что 75% единиц совокупности меньше ее значения, а 25% - больше.

Разность между третьей и первой квартилями представляет собой межквартильный интервал:

где Aq - значение межквартильного интервала; Q 3 - значение третьей квартили; Q, - значение первой квартили.

Децили делят совокупность на 10 равных частей. Дециль - это такое значение признака в ряду распределения, которому соответствуют десятые доли численности совокупности. По аналогии с квартилями первый дециль показывает, что 10% единиц совокупности меньше его значения, а 90% - больше, а девятый дециль выявляет, что 90% единиц совокупности меньше его значения, а 10% - больше. Соотношение девятого и первого децилей, т.е. децильный коэффициент, широко применяется при изучении дифференциации доходов для измерения соотношения уровней доходов 10% наиболее обеспеченного и 10% наименее обеспеченного населения. Перцентили делят ранжированную совокупность на 100 равных частей. Расчет, значение и применение перцентилей аналогичны децилям.

Квартили, децили и другие структурные характеристики можно определить графически по аналогии с медианой с помощью кумуляты.

Для измерения размера вариации используются следующие показатели: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия. Величина размаха вариации целиком зависит от случайности распределения крайних членов ряда. Этот показатель представляет интерес в тех случаях, когда важно знать, какова амплитуда колебаний значений признака:

где R - значение размаха вариации; х тах - максимальное значение признака; х тт - минимальное значение признака.

При расчете размаха вариации значение подавляющего большинства членов ряда не учитывается, в то время как вариация связана с каждым значением члена ряда. Этого недостатка лишены показатели, представляющие собой средние, полученные из отклонений индивидуальных значений признака от их средней величины: среднее линейное отклонение и среднее квадратическое отклонение. Между индивидуальными отклонениями от средней и колеблемостью конкретного признака существует прямая зависимость. Чем сильнее колеблемость, тем больше абсолютные размеры отклонений от средней.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных величин отклонений отдельных вариантов от их средней величины.

Среднее линейное отклонение для несгруппированных данных

где / пр - значение среднего линейного отклонения; х,- - значение признака; х - п - число единиц совокупности.

Среднее линейное отклонение сгруппированного ряда

где / вз - значение среднего линейного отклонения; х, - значение признака; х - среднее значение признака для изучаемой совокупности; / - число единиц совокупности в отдельной группе.

Знаки отклонений в данном случае игнорируются, в противном случае сумма всех отклонений будет равна нулю. Среднее линейное отклонение в зависимости от группировки анализируемых данных рассчитывается по различным формулам: для сгруппированных и несгруниированных данных. Среднее линейное отклонение в силу его условности отдельно от других показателей вариации применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе оборота внешней торговли, состава работающих, ритмичности производства, качества продукции с учетом технологических особенностей производства и т.п.).

Среднее квадратическое отклонение характеризует, на сколько в среднем отклоняются индивидуальные значения изучаемого признака от среднего значения по совокупности, и выражается в единицах измерения изучаемого признака. Среднее квадратическое отклонение, являясь одной из основных мер вариации, широко используется при оценке границ вариации признака в однородной совокупности, при определении значений ординат кривой нормального распределения, а также в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик. Среднее квадратическое отклонение но несгруипированным данным исчисляется по следующему алгоритму: каждое отклонение от средней возводится в квадрат, все квадраты суммируются, после чего сумма квадратов делится на число членов ряда и из частного извлекается квадратный корень:

где a Iip - значение среднего квадратического отклонения; Xj - значение признака; х - среднее значение признака для изучаемой совокупности; п - число единиц совокупности.

Для сгруппированных анализируемых данных среднее квадратическое отклонение данных рассчитывается по взвешенной формуле

где - значение среднего квадратического отклонения; Xj - значение признака; х - среднее значение признака для изучаемой совокупности; f x - число единиц совокупности в отдельной группе.

Выражение под корнем в обоих случаях носит название дисперсии. Таким образом, дисперсия вычисляется как средний квадрат отклонений значений признака от их средней величины. Для невзвешенных (простых) значений признака дисперсия определяется следующим образом:

Для взвешенных значений признака

Существует также специальный упрощенный способ расчета дисперсии: в общем виде

для невзвешенных (простых) значений признака для взвешенных значений признака
с использованием метода отсчета от условного нуля

где а 2 - значение дисперсии; х,- - значение признака; х - среднее значение признака, h - величина группового интервала, т 1 - веса (А =

Дисперсия имеет самостоятельное выражение в статистике и относится к числу важнейших показателей вариации. Она измеряется в единицах, соответствующих квадрату единиц измерения изучаемого признака.

Дисперсия имеет следующие свойства.

  • 1. Дисперсия постоянной величины равна нулю.
  • 2. Уменьшение всех значений признака на одну и ту же величину Л не меняет величины дисперсии. Это означает, что средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-то постоянного числа.
  • 3. Уменьшение веех значений признака в k раз уменьшает дисперсию в k 2 раз, а среднее квадратическое отклонение - в k раз, т.е. все значения признака можно разделить на какое-то постоянное число (скажем, на величину интервала ряда), исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число.
  • 4. Если исчислить средний квадрат отклонений от любой величины А у в той или иной степени отличающейся от средней арифметической, то он всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической. Средний квадрат отклонений при этом будет больше на вполне определенную величину - на квадрат разности средней и этой условно взятой величины.

Вариация альтернативного признака заключается в наличии или отсутствии изучаемого свойства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями: наличие у единицы изучаемого свойства обозначается единицей (1), а его отсутствие - нулем (0). Долю единиц, обладающих изучаемым свойством, обозначают через Р, а долю единиц, не обладающих этим свойством, - через G. Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным свойством (Р), на долю единиц, данным свойством не обладающих (G). Наибольшая вариация совокупности достигается в случаях, когда часть совокупности, составляющая 50% от всего объема совокупности, обладает признаком, а другая часть совокупности, также равная 50%, не обладает данным признаком, при этом дисперсия достигает максимального значения, равного 0,25, т.е. Р = 0,5, G = 1 - Р = 1 - 0,5 = 0,5 и о 2 = 0,5 0,5 = 0,25. Нижняя граница этого показателя равна нулю, что соответствует ситуации, при которой в совокупности отсутствует вариация. Практическое применение дисперсии альтернативного признака состоит в построении доверительных интервалов при проведении выборочного наблюдения.

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность и тем более типичной будет средняя величина. В практике статистики часто возникает необходимость сравнения вариаций различных признаков. Например, интересным является сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для таких сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях. Для осуществления таких сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с разными средними арифметическими используются показатели вариации - коэффициент осцилляции, линейный коэффициент вариации и коэффициент вариации, которые показывают меру колебаний крайних значений вокруг средней.

Коэффициент осцилляции :

где V R - значение коэффициента осцилляции; R - значение размаха вариации; х -

Линейный коэффициент вариации".

где Vj - значение линейного коэффициента вариации; I - значение среднего линейного отклонения; х - среднее значение признака для изучаемой совокупности.

Коэффициент вариации :

где V a - значение коэффициента вариации; а - значение среднего квадратического отклонения; х - среднее значение признака для изучаемой совокупности.

Коэффициент осцилляции - это процентное отношение размаха вариации к среднему значению изучаемого признака, а линейный коэффициент вариации - это отношение среднего линейного отклонения к среднему значению изучаемого признака, выраженное в процентах. Коэффициент вариации представляет собой процентное отношение среднего квадратического отклонения к среднему значению изучаемого признака. Как величина относительная, выраженная в процентах, коэффициент вариации применяется для сравнения степени вариации различных признаков. С помощью коэффициента вариации оценивается однородность статистической совокупности. Если коэффициент вариации меньше 33%, то исследуемая совокупность является однородной, а вариация слабой. Если коэффициент вариации больше 33%, то исследуемая совокупность является неоднородной, вариация сильной, а средняя величина - нетипичной и ее нельзя использовать как обобщающий показатель этой совокупности. Кроме того, коэффициенты вариации используются для сравнения колеблемости одного признака в различных совокупностях. Например, для оценки вариации стажа работы работников на двух предприятиях. Чем больше значение коэффициента, тем вариация признака существеннее.

На основе рассчитанных квартилей имеется возможность рассчитать также относительный показатель квартальной вариации по формуле

где Q2 и

Межквартильный размах определяется по формуле

Квартильное отклонение применяется вместо размаха вариации, чтобы избежать недостатков, связанных с использованием крайних значений:

Для неравноинтервальпых вариационных рядов рассчитывается также плотность распределения. Она определяется как частное от деления соответствующей частоты или частости на величину интервала. В неравноинтервальных рядах используются абсолютная и относительная плотности распределения. Абсолютная плотность распределения - это частота, приходящаяся на единицу длины интервала. Относительная плотность распределения - частость, приходящаяся на единицу длины интервала.

Все вышеотмеченное справедливо для рядов распределения, закон распределения которых хорошо описывается нормальным законом распределения или близок к нему.

Метод группировок позволяет также измерить вариацию (изменчивость, колеблемость) признаков. При относительно малом числе единиц совокупности вариация измеряется на основе ранжированного ряда единиц, образующих совокупность. Ряд называется ранжированным, если единицы расположены по возрастанию (убыванию) признака.

Однако ранжированные ряды довольно малопоказательны тогда, когда необходима сравнительная характеристика вариации. Кроме того, во многих случаях приходится иметь дело со статистическими совокупностями, состоящими из большого числа единиц, которые практически трудно представить в виде конкретного ряда. В связи с этим для первоначального общего ознакомления со статистическими данными и особенно для облегчения изучения вариации признаков исследуемые явления и процессы обычно объединяют в группы, а результаты группировки оформляют в виде групповых таблиц.

Если в групповой таблице имеется всего две графы - группы по выделенному признаку (варианты) и численности групп (частоты или частости), она называется рядом распределения.

Ряд распределения - простейшая разновидность структурной группировки по одному признаку, отображенная в групповой таблице с двумя графами, в которых содержатся варианты и частоты признака. Во многих случаях с такой структурной группировки, т.е. с составления рядов распределения, начинается изучение исходного статистического материала.

Структурная группировка в виде ряда распределения может быть превращена в подлинную структурную группировку, если выделенные группы будут охарактеризованы не только частотами, но и другими статистическими показателями. Главное предназначение рядов распределения - изучение вариации признаков. Теорию рядов распределения подробно разрабатывает математическая статистика.

Ряды распределения делят на атрибутивные (группировка по атрибутивным признакам, например деление населения по полу, национальности, семейному положению и т.д.) и вариационные (группировка по количественным признакам).

Вариационный ряд представляет собой групповую таблицу, которая содержит две графы: группировку единиц по одному количественному признаку и численность единиц в каждой группе. Интервалы в вариационном ряду образуются обычно равные и закрытые. Вариационным рядом является следующая группировка населения России по величине среднедушевых денежных доходов (табл. 3.10).

Таблица 3.10

Распределение численности населения России по величине среднедушевых доходов в 2004-2009 гг.

Группы населения по величине среднедушевых денежных доходов, руб./мес

Численность населения в группе, в % к итогу

8 000,1-10 000,0

10 000,1-15 000,0

15 000,1-25 000,0

Свыше 25 000,0

Все население

Вариационные ряды в свою очередь подразделяются на дискретные и интервальные. Дискретные вариационные ряды объединяют варианты дискретных признаков, изменяющихся в узких пределах. Примером дискретного вариационного ряда может служить распределение российских семей по числу имеющихся детей.

Интервальные вариационные ряды объединяют варианты либо непрерывных признаков, либо изменяющихся в широких пределах дискретных признаков. Интервальным является вариационный ряд распределения населения России по величине среднедушевых денежных доходов.

Дискретные вариационные ряды на практике применяются не слишком часто. Между тем составление их несложно, поскольку состав групп определяется конкретными вариантами, которыми реально обладают изучаемые группировочные признаки.

Более широко распространены интервальные вариационные ряды. При их составлении возникает сложный вопрос о количестве групп, а также о величине интервалов, которые должны быть установлены.

Принципы решения этого вопроса изложены в главе о методологии построения статистических группировок (см. параграф 3.3).

Вариационные ряды представляют собой средство свертывания или сжатия многообразной информации в компактную форму, по ним можно составить достаточно ясное суждение о характере вариации, изучить различия признаков явлений, входящих в исследуемую совокупность. Но важнейшее значение вариационных рядов состоит в том, что на их основе исчисляются особые обобщающие характеристики вариации (см. главу 7).


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав