04.03.2020

Классификация источников зажигания их энергетические характеристики. Открытый огонь, раскаленные продукты горения и нагретые ими поверхности. Нагретые поверхности технологического оборудования


Под производственным источником зажигания следует понимать любое нагретое тело, обладающее запасом энергии, температурой и временем воздействия, достаточного для воспламенения горючей среды. Из этого определения следует, что не каждое нагретое тело способно воспламенять горючую смесь. В общем случае при оценке воспламеняющей способности внешнего источника теплоты необходимо исходить из следующих положений:

1.Температура источника зажигания t и.з. должна быть больше или равна температуре самовоспламенения горючей среды t с.в. , в контакте, с которой он находится:

Если хотя бы одно из названных условий не выполняется, то источник теплоты не обладает воспламеняющей способностью, следовательно, не может быть отнесён к источнику зажигания.

Производственными источниками зажигания в лаборатории химического осаждения паров могут являться:

– высечение искр при использовании искрящего инструмента;

– нагрев газов при сжатии в компрессорах;

– тепловое проявление лучистого тепла или высоких температур от печей;

– тепловое проявление электрической энергии (перегрузка электрических сетей, искры и дуги коротких замыканий, разряды статического электричества);

– нагревание горючих газов до температуры выше температуры самовоспламенения.

Мероприятия, предотвращающие тепловые проявления механической энергии

а) Исключение выделения искр, образующихся при ударах твердых тел для чего:

– в местах, где возможно образование взрывоопасных смесей необходимо применять искробезопасные инструменты;

– применять искробезопасные вентиляторы для транспортировки паро-и газовоздушных смесей, пылей и твердых горючих материалов;

– в помещениях получения и хранения ацетилена, этилена и т.д., полы выполнять из неискрящего материала или застилать их резиновыми ковриками.

б) Предупреждение нагрева газов при сжатии их в компрессорах:

– применять приборы автоматического контроля и защиты от повышенных давлений в нагнетательных линиях и от пониженных давлений во всасывающих;



– устанавливать предохранительные клапаны на нагнетательных линиях;

– контролировать температуру газа и охлаждающей воды.

Учебная литература

1.Пожарная профилактика в строительстве, Москва (Стройиздат - 1989) Б.В. Грушевский, Н.Л. Котов, В.И. Сидорук, В.Г. Токарев, Е.Т. Шурин, стр.324-329.

Учебный материал

ОСНОВНЫЕ ПРИЧИНЫ ПОЖАРОВ

И ПОТЕНЦИАЛЬНЫЕ ИСТОЧНИКИ ЗАЖИГАНИЯ В ЖИЛЫХ ЗДАНИЯХ

Условно источники зажигания можно разделить на 4 вида:

Открытый огонь в виде тлеющей сигареты, зажженной спички, конфорки газовой плиты или керосинового примуса (фонаря, лампы);

Тепло электронагревательных приборов;

Проявления аварийной работы электрических приборов и аппаратов, как отечественного, так и зарубежного производства;

Искры от сварочных аппаратов и самовозгорание веществ и материалов.

Горючая среда представляет собой всю обстановку квартиры вместе с кислородом воздуха, который постоянно присутствует в помещении. Эта среда может быть более или менее горючей в зависимости от ее содержимого.

В пожарной науке существует понятие группы горючести веществ и материалов. По горючести все вещества и материалы подразделяются на негорючие и 4 группы горючих (ГОСТ 30244 (метод II)): - Г1 (слабо горючие); - Г2 (умеренно горючие); - Г3 (нормально горючие); - Г4 (сильно горючие).

Современная квартира представляет собой одну огромную горючую среду. Ученые пожарной науки дали определение этой среде - “пожарная нагрузка”, которая принимается в среднем 50 кг на 1 м 2 . Отсюда делаются все остальные выкладки, огневые эксперименты, расчеты и, в конечном итоге, даются рекомендации, которые заносятся потом в стандарты, строительные нормы и правила, нормы технологического проектирования, правила пожарной безопасности и другие, в том числе и ведомственные. Все горючие вещества и материалы имеют свою температуру воспламенения, которая колеблется от отрицательных (бензин, керосин, лаки, краски и т.п.) до положительных величин и не превышает для большинства твердых материалов 300 С.

Другими словами, горящая спичка, тлеющая сигарета способны воспламенить любое горючее вещество.

Следующий вопрос - это поведение горючей среды при пожаре. В первые 10 минут от начала возгорания материала пламя распространяется линейно в разные его стороны (преимущественное направление вверх). Выделяется определенная температура, которая аккумулируется в помещении или в какой-то его части (преимущественно вверху). По мере возрастания температуры начинают возгораться другие вещества и материалы, попавшие в зону высокой температуры. Процессы возгорания горючих веществ и материалов происходят настолько хаотично, насколько хаотично расставлена “горючая среда” в квартире. Соответственно и развитие пожара, его этапы могут отличаться по времени. Ни один пожар не похож на другой - в этом заключается вся сложность описания пожара. Однако, зная общие тенденции возникновения и развития пожара, каждый самостоятельно может оценить пожарную обстановку.

Для этого необходимо определить:

Места с потенциальными источниками зажигания;

Горючесть примыкающих к источникам зажигания материалов;

Вероятные пути распространения пожара.

Открытый огонь в виде тлеющей сигареты, зажженной спички, конфорки газовой плиты или керосинового примуса (лампы, фонаря) не требуют особых комментариев. Все они часть нашего быта. Необходимо постоянно помнить, что любой из этих источников способен воспламенить горючий материал.

Правилами пожарной безопасности курение сигарет в жилых и общественных помещениях не регламентируется, поэтому попытаемся самостоятельно сформулировать основные требования: тлеющий пепел необходимо собирать в пепельницы, выполненные из негорючих материалов слабо проводящих тепло (толстое стекло, негорючий пластик и т.п.), но ни в коем случае не бумажные пакеты, пластмассовые урны или другие сгораемые предметы. При использовании тонкостенных металлических приспособлений, в них необходимо наливать неболь- шое количество воды, т.к. металл хорошо проводит тепло; класть сигарету в пепельницу необходимо так, чтобы исключалось ее выпадение при полном сгорании табака; по окончании - тщательно загасить сигарету. Сообразуясь с обстоятельствами, каждый сможет дополнить эти требования самостоятельно. Непогашенные сигареты, выброшенные из окон или балконов потоками воздуха могут заноситься на соседние балконы и в открытые окна квартир, что становится причиной пожаров. Поэтому для исключения заноса источника зажигания в помещение необходимо закрывать окна и двери балконов при уходе из квартиры. Ни в коем случае не допускается бросать непогашенные сигареты в нижние пролеты или шахту лифта, где могут находиться газетная бумага, картон или сгораемая обшивка лифта. Тления газетной бумаги или картона, не говоря уже о пластике, достаточно, чтобы отрезать путь эвакуации и вызвать панику граждан.

Открытое пламя газовых и керосиновых плит, керосиновых фонарей и ламп является более мощным источником зажигания, чем пламя спички (спичка сгорает за 20 секунд и в некоторых случаях мощности ее теплового потока недостаточно для воспламенения материала). В правилах пожарной безопасности к этим источникам зажигания предъявляются общие ограничительные требования. Все оборудование газовых плит должно соответствовать требованиям государственных стандартов на данное оборудование и иметь сертификаты качества. Не допускается пользоваться неисправными приборами. Газовые и керосиновые плиты (водонагреватели, лампы, фонари) должны размещаться не ближе 20 см от сгораемых строительных конструкций. Эти же 20 см необходимо выдерживать при расстановке кухонной мебели и других сгораемых предметов. По высоте расстояние до сгораемых конструкций и предметов должно быть не менее 80 см. Запрещается сушить над плитами одежду и белье. Деревянные неоштукатуренные стены и стены из других горючих материалов в местах установки газокеросиновых приборов следует изолировать негорючими материалами: штукатуркой, кровельной сталью по листу асбеста толщиной не менее 3 мм и др. Изоляция должна выступать за габариты приборов на 10 см с каждой стороны и не менее 80 см сверху. Расстояние от плиты до таких стен, а также до всех несгораемых стен помещения должно быть не менее 7 см; расстояние между плитой и противоположной стеной должно быть не менее 1 м. Не допускается оставлять незакрытыми краны газовых приборов и газопроводов. Внутреннюю газовую подводку необходимо выполнять из стальных труб. Присоединение газовых плит допускается и при помощи резиновых или резинотканевых рукавов. При этом рукава должны иметь сертификаты качества. Это очень актуально в связи с поставкой в последнее время различными фирмами импортных газовых плит и комплектующих к ним - пластмассовых соединительных трубок в металлической оплетке. Газовые колонки для нагревания воды (водонагреватели) запрещается крепить непосредственно к сгораемым конструкциям. Допускается на оштукатуренных или облицованных негорючими или трудногорючими материалами стенах на расстоянии не менее 3 см от стены. 10 Для отопления помещений допускается предусматривать газовые камины, калориферы и другие приборы заводского изготовления с отводом продуктов сгорания в дымоход. Газогорелочные устройства этих приборов должны быть оснащены автоматикой безопасности. Во всех случаях установку газовых приборов должны производить квалифицированные специалисты с оформлением по окончании монтажа и пуска приборов в эксплуатацию соответствующего акта и гарантийного талона на обслуживание. Очень важное условие для помещений с газовыми приборами - они должны иметь естественную или искусственную вентиляцию для предотвращения накопления газа в помещении и его взрыва. Газобаллонные установки или отдельные баллоны для снабжения газом кухонных и других плит должны располагаться в негорючей пристройке (металлическом ящике) у глухого участка наружной стены не ближе 5 м от входа в здание. Размещении баллонов внутри зданий для проживания людей должно осуществляться в соответствии с требованиями правил безопасности в газовом хозяйстве. Керосиновые приборы не допускается заправлять бензином или тракторным керосином, что связано с различиями процессов горения данных жидкостей. Печи на твердом топливе встречаются на дачах граждан и к ним также предъявляются требования пожарной безопасности. В частности, не разрешается: оставлять печи без присмотра или поручать надзор малолетним детям; располагать топливо на предтопочном листе; применять для розжига печи бензин, керосин и другие ЛВЖ и ГЖ; использовать вентиляционные и газовые каналы в качестве дымоходов; перекаливать печи. Предтопочный металлический лист укладывается на сгораемый пол, должен быть без прогаров и повреждений и иметь размеры не менее 0,5х0,7 м. Очищать дымоходы и печи от сажи необходимо перед началом, а также в течение всего отопительного сезона не реже одного раза в месяц для кухонных плит и в три месяца - для отопительных печей. Печи непрерывного действия должны очищаться от сажи не реже одного раза в два месяца. Это требование связано со способностью сажи (углерода) самовозгораться под действием влаги.

Электрический ток является одним из распространенных источников зажигания в современных зданиях. Мы не случайно поставили его на второе место после открытого огня, так как более 20% пожаров происходит вследствие аварийной работы электрических сетей и приборов. Необходимо отметить, что данный вид источников зажигания менее опасен, чем открытый огонь и, при правильной эксплуатации электросети, наличии надежных защитных устройств, вероятность пожара сводится к нулю. Что необходимо знать о пожарной опасности электроустановок, т.е. жилого (хозяйственного и т.п.) помещения вместе со всеми электрическими сетями, коммуникациями и приборами? Прежде всего, что источником зажигания является тепло, выделяемое электрическими сетями и приборами в аварийных режимах работы. Короткое замыкание, перегрузка, переход- ные сопротивления - характерные проявления аварийных режимов. В ППБ записано, что монтаж и эксплуатация электросетей и оборудования должны производиться в соответствии с требованиями Правил устройства электроустановок и Правил технической эксплуатации электроустановок потребителей. А эти документы, в свою очередь, требуют, чтобы все электротехнические работы проводились специально обученным квалифицированным персоналом. Все электротехнические работы в квартирах граждан проводятся по их заявкам через диспетчерскую службу ремонтно-эксплуатационного предприятия, обслуживающего дом. Диспетчер ОДС, приняв заявку на устранение неисправности, обязан сообщить номер заявки в соответствии с записью в специальном журнале. Квартиросъемщик же, до устранения неисправности в электросети, обязан обесточить аварийный участок. Жилищно-эксплуатационные организации в своей работе руководствуются “Правилами и нормами технической эксплуатации жилищного фонда”. Этот документ разграничивает ответственность за правильную эксплуатацию внутридомовых электросетей: жилищно-эксплуатационная организация - до входных зажимов квартирных счетчиков электрической энергии; в квартирах ответственность возлагается на квартиросъемщиков. Поэтому сформу- лируем общие принципы обеспечения пожарной безопасности электроустановок. Осмотр электроустановок начнем с ввода электросети в квартиру. На вводе устанавливается электрический счетчик с предохранителями. Предохранители рассчитаны на пропускание определенного количества электроэнергии, соответствующего толщине сечения электрических проводов внутриквартирной сети. Оптимальными для осветительной сети квартир в 220 В являются пробковые или автоматические предохранители на 6 ампер для жилых комнат и 10-16 ампер - для кухни и санузла. Более мощные предохранители в 25 ампер устанавливаются в электрических сетях с напряжением в 220-380 В (например, для электроплит). В последнее время для обеспечения безопасности электросети устанавливаются уст- ройства электрозащитного и противопожарного отключения АСТРО*УЗО. Данный вид электрозащиты принят во всех развитых и развивающихся странах мира и с 1996 года стал применяться в нашей стране для защиты электросетей вновь строящихся и реконструируемых жилых и общественных зданий. Принцип действия АСТРО*УЗО основан на отключении электросети в случае ее аварийного режима работы, в том числе при появления тока утечки от 10 до 100 миллиампер (токи утечки в 300 мА и более могут вызвать возгорание изоляции проводников). При этом время отключения составляет всего лишь 0,03 секунды. Токи утечки появляются в случаях, когда происходит контакт человека с открытыми токопроводящими частями электрооборудования, а также при потере изоляцией электропроводки диэлектрических свойств и замыкании их между собой или на землю (протекающий через тело человека ток до 30 мА не вызывает смертельного исхода). Применение УЗО в современных условиях позволяет решить очень важную задачу. В большинстве существующих жилых и общественных зданий с ветхой электропроводкой данный вид защиты представляет собой надежный заслон от пожаров. Теперь пойдем дальше. К каждой линии электросети должно подключаться столько электроприборов, чтобы их общая мощность не превышала расчетной мощности сети. Для сети освещения в 220 В с предохранителями в 6 А мощность составляет 1,3 кВт (произведение напряжения и силы тока), с предохранителями в 10 А - 2,2 кВт. Зная паспортные значения мощности электроприборов, нетрудно подсчитать общее их количество, допустимое к подключению в электросеть. Если электросеть защищена автоматическими предохранителями, то всякое превышение установленной для сети мощности будет сопровождаться автоматическим отключением электроэнергии. Но если у вас пробковые предохранители с “жучками”, то в этом случае общая мощность электросети увеличивается на толщину “жучка”, что ведет к перегрузке электросети. Перегрузкой называется такое явление, когда по электрическим проводам и электрическим приборам идет ток больше допустимого. Опасность перегрузки объясняется тепловым действием тока. При двукратной и большей перегрузке сгораемая изоляция проводников воспламеняется. При небольших перегрузках происходит быстрое старение изоляции и срок ее диэлектрических свойств сокращается. Так всякое превышение температуры электрических проводов на 8о сокращает срок годности изоляции в два раза. 12 Основными причинами перегрузки являются: несоответствие сечения проводников рабочему току (например, когда электропроводка к звонку выполняется телефонным проводом); параллельное включение в сеть не предусмотренных расчетом токоприемников без увеличения сечения проводников (например, подключение удлинителя с 3-4 розетками в одну рабочую); попадание на проводники токов утечки, молнии; повышение температуры окружающей среды. Кроме того, при перегрузке электросети приборы и аппараты, подключенные к ней, постоянно испытывают нехватку тока, что может привести к их аварийному выходу из строя. В связи с этим обратите внимание на паспортные данные электроприборов и наличие в них стабилизаторов напряжения. Коротким замыканием (КЗ) называется всякое замыкание между проводами, или между проводом и землей (под “землей” здесь понимается любое токопроводящее изделие, отличное от провода, в т.ч. и тело человека). Причиной возникновения КЗ является нарушение изоляции в электрических проводах и кабелях, машинах и аппаратах, которое вызывается: перенапряжениями; старением изоляции; механическими повреждениями изоляции; прямыми уда- рами молнии. При возникновении КЗ в цепи ее общее сопротивление уменьшается, что при- водит к увеличению токов в ее ветвях по сравнению с токами нормального режима. Опасность КЗ заключается в увеличении в сотни тысяч ампер силы тока, что приводит к выделению в самый незначительный промежуток времени большого количества тепла в проводниках, а это вызывает резкое повышение температуры и воспламенение изоляции, расплавление материала проводника с выбросом искр, способных вызвать пожар горючих материалов (температура плавления алюминия составляет 660о С, меди - 1085о С, а температура их кипения достигает 2500о С). Установлено, что воспламенение изоляции проводов и кабелей может наступить при кратности тока КЗ (т.е. превышении значения длительно допустимого тока) более 2,5, но менее 21 в зависимости от материала изоляции. Кроме того, внезапное снижение напряжения при КЗ негативно сказывается на работе электрооборудования и может привести к пожару за много метров от места КЗ. Переходным сопротивлением (ПС) называется сопротивление, возникающее в местах перехода тока с одного провода на другой или с провода на какой-либо электроаппарат при наличии плохого контакта в местах соединений и оконцеваний (при скрутке, например). При прохождении тока в таких местах выделяется большое количество теплоты. Если нагретые контакты соприкасаются с горючими материалами, то возможно их воспламенение, а при на- личии взрывоопасных смесей - взрыв. В этом и заключается опасность ПС, которая усугубляется тем, что места с наличием переходных сопротивлений трудно обнаружить, а защитные аппараты сетей и установок, даже правильно выбранные, не могут предупредить возникновение пожара, так как электрический ток в цепи не возрастает, а нагрев участка с ПС происходит только вследствие увеличения сопротивления. Искрение и электродуга есть результат прохождения тока через воздух. Искрение наблюдается при размыкании электрических цепей под нагрузкой (например, когда вынимается электровилка из электророзетки), при пробое изоляции между проводниками, а также во всех случаях при наличии плохих контактов в местах соединения и оконцевания проводов и кабелей. Под действием электрического поля воздух между контактами ионизируется и, при достаточной величине напряжения, происходит разряд, сопровождающийся свечением воздуха и треском (тлеющий разряд). С увеличением напряжения тлеющий разряд переходит в искровой, а при достаточной мощности искровой разряд может быть в виде электрической дуги. Искры и электродуги при наличии в помещении горючих веществ или взрывоопасных смесей могут быть причиной пожара и взрыва. Сформулируем общие принципы пожарной безопасности от искр, дуг, перегрузок, коротких замыканий и переходных сопротивлений. Эти явления невозможны, если: 13 правильно производить соединение и оконцевание проводников; тщательно соединять провода и кабели (пайкой, сваркой, опрессовкой, специальными сжимами); правильно выбирать сечение проводников по нагреву электрическим током; ограничить параллельное включение токоприемников в сеть; создавать условия для охлаждения проводов электроприборов и аппаратов; применять только калиброванные плавкие предохранители или автоматические выключатели; проводить планово-предупредительные осмотры и измерения сопротивления изоляции проводов и кабелей, устанавливать быстродействующие аппараты защиты (с чем повседневно успешно справляется АСТРО*УЗО); защищать от окисления разъединяемые контакты.

Огневые работы, проводимые при реконструкции и ремонте жилых помещений (замена труб отопления, водопровода и т.п.), представляют значительную пожарную опасность. Она заключается прежде всего в том, что такие работы выполняются без достаточного контроля и надзора со стороны лиц, обязанных руководить этими работами. Жильцов, живущих на соседних этажах, не предупреждают о проведении огневых работ и необходимости наполнить водой имеющиеся емкости (замена трубопроводов сопровождается отключением стояка полностью), а также присутствовать в квартире на время проведения работ. Располагают баллоны с взрывоопасными газами на путях эвакуации жильцов. Используют неисправное или не прошедшее обязательной сертификации оборудование. Огневые работы подразделяются на электро- и газосварку, бензо- и керосинорезку, паяльные работы, огневой разогрев битума и некоторые другие, связанные с применением от- крытого огня. Проанализируем опасные факторы огневых работ. При электрической сварке подсоединение сварочного трансформатора часто производится к внутридомовой электросети, что вызывает ее перегрузку и, как следствие, все те пожароопасные проявления, перечисленные в предыдущей главе. Температура электрической дуги составляет 3000о С, что в 10 раз больше, чем необходимо для воспламенения любого горючего материала. При газовой сварке и резке, бензокеросинорезательных работах темпера- тура пламени достигает 2500о С, что ненамного уступает пламени дуги электросварки При нагреве металла перечисленными выше способами образуются его капли и искры с температурой более 1700о С. Зажигательная способность раскаленных капель и искр сохраняется до 5 м по горизонтали и до 14 м по вертикали. Поэтому все горючие вещества и материалы в пределах этих радиусов должны быть эффективно защищены или убраны за их пределы. При проведении резки и сварки трубопроводов не всегда учитывается еще и то, что трубы, проходя между этажами, имеют неплотности между стенкой трубы и конструкцией перекрытия. Именно через эти неплотности капли и искры чаще всего проникают на ниже- лежащие этажи, мгновенно воспламеняя все горючее на своем пути. Столь мощный источник зажигания может проявить себя и с другой, коварной, стороны. При предельном разлете искр и капель, когда их зажигательная способность становится минимальной, горение чаще всего начинается с тления и протекать медленно и скрыто. В этом случае очаг пожара обнаруживается только через нескольких часов после окончания работы в отсутствие рабочих. 14 Учитывая общую неорганизованность огневых работ в жилье, можно порекомендовать в подобных случаях следующие меры безопасности. Прежде всего необходимо выяснить у руководителя работ его фамилию, имя и отчество, номер телефона, по которому можно оперативно связаться с ним в экстренных случаях, а также наименование организации, проводя- щей работы. Ознакомиться с планом проведения работ, а в случае его отсутствия потребовать, чтобы такой план был составлен и доведен до сведения всех жильцов (в том числе и с росписью последних о проведении с ними противопожарных инструктажей). Помните, что правилами пожарной безопасности запрещается приступать к выполнению каких-либо пожа- роопасных работ (в их число, кроме огневых, входят также окрасочные работы, работы с мастиками и клеями и другими пожаровзрывоопасными веществами, электротехнические работы и пр.) без предварительного согласования общего плана работ с жилищно-эксплуатационной организацией и получения разрешения, которое выдается руководителем жилищно-эксплуатационной организации на определенный срок. Если такое разрешение отсутствует, то необходимо немедленно поставить в известность техника жилищно-эксплуатационной организации, который несет ответственность за пожарную безопасность закрепленных за ним жилых домов. На техника возлагается обязанность постоянного контроля выполнения условий раз- решения в течение всего периода работ, проверка готовности рабочего места к выполнению работ, информирование жильцов подъезда (этажа, дома) о начале и конце проведения работ. Техник вправе запретить выполнение работ, если имеются сомнения в безопасном их проведении. Одной из мер также является страхование жильцами квартир и имущества на весь пери- од проведения работ. В настоящее время противопожарное страхование во многих случаях является единственным источником возмещения ущерба, нанесенного пожаром.

Самовозгорание присуще твердым горючим веществам и материалам. Самовозгорание имеет;

Тепловую;

Химическую;

Микробиологическую природу.

Самовозгорание, происходящее в процессе самонагревания материалов под действием постороннего источника нагревания, называется тепловым самовозгоранием . Тепло обыкновенного трубопровода горячей воды или пара может явиться тем источником тепла, которого достаточно для самовозгорания изделий из ткани, бумаги или древесины. Напомним, что температура горячей воды в системе отопления достигает 150о С, а пара - 130о С. Поэтому в правилах пожарной безопасности записано, что трубопроводы горячей воды или пара необходимо ограждать только экранами из негорючих материалов. В общественных зданиях допускаются декоративные решетки, но и в первом и во втором случаях рас- стояние от трубопроводов до экранов, а равно и до любого сгораемого материала (шторы, на- пример) должно быть не менее 100 мм. Часто мы становимся свидетелями тления и горения угля в кучах, торфа, неоднократно отмечены случаи самовозгорания толи в рулонах, целлофана и целлулоида, бумаги, а также материалов, содержащих нитроцеллюлозную основу, при хранении в больших кипах и пакетах. Температура самонагревания торфа и бурого угля составляет 50-60о С, хлопка - 120о С, бумаги - 100о С, поливинилхлоридного линолеума - 80о С и т.д. Для большинства горючих веществ температура самонагревания не превышает 150о С. Общее требование пожарной безопасности для случаев теплового самовозгорания формулируется довольно просто: безопасной температурой длительного нагрева вещества считается температура, не превышающая 90% температуры его самонагревания.

Химическое самовозгорание связано со способностью веществ и материалов вступать в химическую реакцию с воздухом или другими окислителями при нормальных условиях с выделением теплоты, достаточной для их возгорания. Наиболее характерными примерами являются случаи самовозгорания промасленной ветоши, легковоспламеняющихся жидкостей при контакте с марганцовкой, древесных опилок с кислотами и пр. Поэтому хранение веществ и материалов должно всегда отвечать требованиям их совместимости. Другой вид химических реакций веществ связан с взаимодействием воды или влаги. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь и др. Особенностью щелочноземельных металлов является их способность разогреваться под действием влаги до больших температур и расщеплять влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода.

И, наконец, микробиологическое самовозгорание связано с деятельностью мельчайших насекомых, которые в больших количествах размножаются в спрессованных материалах, поедая все органическое, и там же умирают, вместе со своим разложением выделяя определенную температуру, которая накапливается внутри материала. Наиболее характерным приме- ром является самовозгорание прошлогодних скирд сена. Определить наличие процессов теплового самовозгорания можно по устойчивому запаху тлеющего материала в течение определенного времени, поскольку тепловое самовозгорание начинается с тления. Химическое самовозгорание сразу проявляет себя в виде пламенного горения. Наиболее часто в квартирах самовозгорание связано с неправильным хранением ве- ществ и материалов, которые складируются на балконах (лоджиях) без защиты от солнечных лучей, в неплотно закрытых емкостях, что обеспечивает их нагревание энергией солнца и окисление кислородом воздуха. Поэтому основным требованием правил пожарной безопасности является требование строгого соблюдения инструкций по хранению веществ и материалов, которые в обязательном порядке должны находиться на емкости с ними или прилагаться в виде паспорта на материал. Хранение веществ и материалов с неизвестными пожа- ровзрывоопасными характеристиками категорически запрещается. Заканчивая главу, напомним, что Правилами пожарной безопасности допускается хранение ЛВЖ-ГЖ в жилых квартирах в количестве не более 10 л в закрытой таре. При этом, если количество горючих жидкостей превышает 3 л, они должны храниться в таре из негорючих и небьющихся материалов. Не допускается хранение баллонов с горючими газами, в том числе запасных, в индивидуальных жилых домах, квартирах и жилых комнатах, а также в кухне, на путях эвакуации, в цокольных этажах, в подвальных и чердачных помещениях, на балконах и лоджиях.

НЕКОТОРЫЕ ОБЩИЕ ВЫВОДЫ:

1) Пожар невозможен там, где нет контакта горючего вещества с источником за- жигания. Особое внимание уделите открытому огню. Удалите все горючее (в т.ч. шторы и занавески) от газовых плит и других нагревательных приборов на безопасное расстояние. Не развешивайте вещи для просушивания непосредственно над нагревательными приборами. Не бросайте горящие (тлеющие) предметы с балконов и окон. Покидая помещение, закрывайте окна и двери балконов.

2) Если источник зажигания невозможно исключить на 100%, то помещение ре- комендуется защищать средствами автоматической защиты и тушения пожара (например, самосрабатывающими огнетушителями).

3) Электрическая энергия является потенциальным источником зажигания, если нет надежной защиты электросети от токов короткого замыкания и перегрузок. Уходя из помещения, отключите электроприборы. Горящие электрические приборы необходимо обесточить и, если горение не прекратилось, залить водой или накрыть плотной тканью. Для тушения электроприборов рекомендуется использовать порошковые огнетушители. Они эффективно локализуют зону горения и не наносят побочного вреда электронным устройствам и микросхемам.

4) Строго соблюдайте инструкции по хранению веществ и материалов. Храните пожаровзрывоопасные вещества в строго ограниченных количествах в закрытой (не- бьющеся) таре.

5) Средства обнаружения и тушения пожара, а также противодымной защиты должны постоянно находиться в исправном состоянии.

6) Пути эвакуации не допускается отделывать сгораемыми материалами и за- громождать, а двери (люки) эвакуационных выходов забивать гвоздями или запирать на неоткрывающиеся запоры. Не захламляйте балкон. Помните, что балкон - это место летнего отдыха, а не склад. Не отделывайте балконы и лоджии сгораемыми материалами. При пожаре балкон может стать единственным местом, безопасным от огня и дыма.

7) В случае обнаружения первых признаков пожара немедленно звоните по телефону «101» и затем попытайтесь самостоятельно потушить возгорание. Однако в случаях, когда дым и температура препятствуют подходу к очагу пожара, изолируйте горящее помещение от поступления в него свежего воздуха, отключите электроэнергию и газ, и немедленно покиньте помещение. Укажите прибывшим пожарным местонахождение пожара.

БОЗС, Тимошков В.Ф.


Похожая информация.


1 Разряд атмосферного электричества

- Прямой удар молнии. Опасность прямого удара молнии заключается в контакте горючей среды с каналом молнии, температура в котором достигает 30 000 °С при силе тока 200 000 А и времени действия около 100 мкс.

- Вторичное воздействие молнии. Опасность вторичного воздействия молнии заключается в искровых разрядах, возникающих в результате индукционного и электромагнитного воздействия атмосферного электричества на производственное оборудование, трубопроводы и строительные конструкции.

- Занос высокого потенциала. Занос высокого потенциала в здание происходит по металлическим коммуникациям не только при их прямом поражении молнией, но и при расположении коммуникаций в непосредственной близости от молниеотвода.

2 Электрическая искра (дуга).

- Термическое действие токов короткого замыкания. Проводник нагревается током короткого замыкания и при определенных условиях происходит воспламенение изоляции.

- Электрические искры (капли металла). Искры образуются при коротком замыкании электропроводки, электросварке и при плавлении электродов электрических ламп накаливания общего назначения.

3 Электрические лампы накаливания общего назначения. Температура нагрева колбы электрической лампочки зависит от мощности лампы, ее размеров, расположения в пространстве и продолжительности контакта с горючей средой. Так, например, температура колбы фотолампы мощностью 40 Вт на 15-й составляет 150 °С, а 275 Вт – 550 °С.

4 Искры статического электричества. Статическая электризация возникает в потоке органических жидкостей, при разбрызгивании жидкостей, в струе пара или газа, при трении твердых разнородных тел и тому подобных процессах.

5 Механические (фрикционные) искры. Механизмом образования механических (фрикционных) искр является переход механической энергии в тепловую энергию. При этом можно выделить искры удара и искры трения. К первой группе искр можно отнести искры, образующиеся при ударе металла о металл; при ходьбе в обуви, подбитой металлическими набойками или гвоздями и т.п. Ко второй группе можно отнести искры, образующиеся при переработке твердых куско­вых материалов или волокнистых и пылевидных материалов с твер­дыми инородными включениями (камнями, кусками металла и пр.).

6 Открытое пламя и искры двигателей (печей). Открытое пламя и высоконагретые продукты сгорания топлива используются для нагрева веществ до высоких температур и про­ведения химических реакций, для получения тепловой, электри­ческой энергии, а также механической работы в различных аппа­ратах и установках (печах, реакторах, котлах, двигателях и т.д.), при электро- и газосварке, пайке.



7 Нагрев веществ, отдельных узлов и поверхностей технологического оборудования. Кроме нагрева газов в компрессоре, заслуживает внимания и другие виды нагрева элементов технологического оборудования. К ним следует отнести:

нагрев электрических контактов при возникновении повышенных переходных сопротивлений;

нагрев подшипника скольжения при отсутствии смазки и принудительного охлаждения;

несоответствие электрической защиты приборов и оборудования действующим нормативам;

нагрев электропривода при возникновении перегрузки и т.п.

8 Самовозгорание веществ. К веществам, склонным к самовозгоранию, относятся каменный и древесный уголь, сажа, фрезерный торф, сено, силос, а также волокнистые и пористые материалы, пропитанные растительными маслами и животными жирами, скипидаром, олифой. К ним также можно отнести губчатые металлы (алюминий, титан, магний, никель и др.),

Самовозгорание представляет собой процесс низкотемпературного окисления материалов, ко­торый заканчивается тлением или пламенным горением.

9 Неосторожность при обращении с бытовыми источниками огня;

10 Нарушение правил пожарной безопасности при эксплуатации оборудования, при выполнении различного вида работ;

11 Технологические аварии;

12 Взрывы;

13 Поджоги.

Динамика развития пожара. Развитие пожара зависит от многих факторов: физико-химических свойств горящего материала; пожарной нагрузки, под которой имеется в виду масса всех горючих и трудногорючих материалов, находящихся в горящем по­мещении; скорости выгорания пожарной нагрузки; газообмена очага пожара с окружающей средой и с внешней атмосферой и т.п.

Имеются общие схемы развития пожа­ра . Они включают несколько основных фаз (экспериментальные данные для помещения размером 5х4х3 м при отношении площади оконного проема к площади пола, равном 25; пожарной нагрузке 50 кг/м 2 - древесные бруски):

I фаза (10 мин)-начальная стадия, включающая переход возгорания в пожар (1-3 мин) и рост зоны горения (5-6 мин).

В течение первой фазы происходит преимущественно линейное распространение огня вдоль горючего вещества или материала. Горение сопровождается обильным дымовыделением, что затрудняет определение места очага пожара. Среднеобъемная тем­пература повышается в помещении до 200 °С (темп увеличения среднеобъемной температуры в помещении 15 °С в 1 мин). Приток воздуха в помещение сначала увели­чивается, а затем медленно снижается. Поэтому очень важно в этот период развития пожара обеспечить изоляцию данного помещения от наружного воздуха. Не рекомендуется открывать или вскрывать окна и двери в горящее помещение. В некоторых случаях (при достаточном обеспечении герметичности помещения) наступает самозатухание пожара и нет необходимости вызывать пожарные подразделения при первых признаках пожара (дым, пламя). Если очаг пожа­ра виден, необходимо, по возможности, принять меры к тушению пожара первичными средствами пожаротушения до прибытия пожарных подразделений.

Продолжительность 1 фазы составляет 2-30 % от общей продолжительности пожа­ра.

II фаза (30-40 мин) -стадия объемного развития пожара. Бурный процесс, температура внутри помещения поднимается до 250-300 °С, на­чинается объемное развитие пожара, когда пламя заполняет весь объем помещения, и процесс распространения пламени происходит уже не поверхностно, а дистанционно, через воздушные разрывы. Разрушение остекления происходит через 15-20 мин от начала пожара. Из-за разрушения остекления приток свежего воздуха резко увеличивает развитие по­жара. Темп увеличения среднеобъемной температуры - до 50 °С в 1 мин. Температура внутри помещения повышается с 500-600 до 800-900 °С. Максимальная скорость выго­рания составляет 10-12 мин. Стабилизация пожара происходит на 20-25 минуте от начала пожара и продол­жается 20-30 мин.

III фаза - затухающая стадия пожара. Догорание в виде медленного тления, после чего через некоторое время (иногда весьма продолжительное) пожар догорает и прекращается.

Температурное поле внутреннего пожара неравномерно в объеме поме­щения. Так, при горении бензина на площади 2 м 2 в помеще­нии объемом 100 м 3 на 15 минуте в зоне горения температура составила 900 °С, а в самой удаленной точке 200 °С. При этом у потолка температура дости­гала 800 °С и более, по центру высоты помещения - 500 °С, у пола - 200 °С.

Нагретые продукты горения преимущественно концентрируются в верх­ней части помещения, что особенно характерно для помещений с высокими потолками. Поэтому в условиях задымленного помещения наилучшая види­мость и соответственно наименьшая концентрация отравляющих веществ у припольного пространства.

Условия распространение пожара. После возникновения горение может распространяться, при этом образуются изолированные очаги - очаги, непосредственно не связанные с основной зоной горения. Образуются они за счет передачи теплоты на смежные постройки, сооружения, части здания радиацией, конвекцией, теплопроводностью, при попа­дании горящих углей, искр на горящие материалы вне зоны горения (рис.5).

Рассмотрим основные ситуации, в которых возможно об­разование вторичных изолированных очагов.

1 Конвекция (от лат. Convectio – привнесение, доставка) – перемещение микроскопических частей среды (газа, жидкости), приводящих к массо- и теплообмену. Конвекция - явление, состоящее в теплопередаче путем движения теплоносителей, т.е. жидкостей или газов. Нагретый теплоноситель может перемещаться или быть перемещаем в более холодную зону, где он отдаст свое тепло для нагрева этой зоны. Причиной возникновения естественной конвекции является перемещение нагретых и холодных частиц, происходящее вследствие разной их плотности.

Конвективные потоки с высокой температурой нагрева­ют на путях своего распространения конструкции, предметы и материалы, что может вызвать их воспламенение, а также де­формацию и разрушение негорючих элементов и частей зда­ния.

Мощные вихревые конвективные потоки свойственны крупным пожарам. Радиус разноса (разлёта) горящих час­тиц может достигать до 100 м метров, а иногда и больше. По литературным данным, на пожарах лесоскладов и лесобирж при площади пожара до 3000 м 2 радиус разлета горящих головней может быть до 440 м, а при площади горения 25 000 м 2 наблюдался разлет горящих частиц на расстояние до 2 км (!).

2 Тепловая радиация (от лат. Radio – испускаю лучи, излучаю) – перенос лучистого теплового потока от горящего объекта к не горящему. Радиация представляет собой перенос тепла через пространство при помощи электромагнитных волн. При этом образование вторичного очага пожара происходит, если тепловой поток, воздействующий на второй объект, превысит критические значения, необходи­мые для загорания обращенных к горящему объекту материа­лов и конструкций. Недаром существуют требования к проти­вопожарным разрывам между зданиями и сооружениями.

3 Роль кондукции (теплопроводности) в появлении вторичных очагов пожара можно проиллюстрировать примерами пожаров, когда через конструкцию здания проходят нагретые до высокой температуры трубы отопления, что приводит к загоранию материалов и изделий в соседнем помещении.

4 Возможно образование вторичных очагов за счет стекания горящей жидкости, расплавленных полимерных материа­лов. Например, если газообразные продукты сгорания из ком­наты выходят в соседнее помещение, где на потолке установ­лены люминесцентные светильники с экранами из органиче­ского стекла. Стекло, расплавляясь и стекая на пол, может образовать там множественные вторичные очаги. В городах имели место случаи, когда при ремонте кровли многоэтажного здания загорался битум на крыше; расплавленный горящий битум стекал вниз по внутренним водосточным трубам, которые в домах отдельных серий сделаны из полимерных материалов, и в результате вторичные очаги пожара возникали на отдельных этажах здания.

27 августа 2000 г. загорелась Останкинская телевизионная Башня в Москве. Горение возникло в стальной части башни меж­ду отметками 454-478 м и распространилось, несмотря на пред­принимаемые меры, на 380 м вниз. Во многом это произошло благодаря полиэтиленовым оболочкам фидеров (волноводов); поли­этилен плавился, стекал вниз и горел, обеспечивая активное раз­витие пожара в необычном (противоположном конвективным потокам) направлении.

В производственных условиях самыми распространенными источниками воспламенения являются:

а) искры, образующиеся при коротких замыканиях, и нагревания участков электросетей и электрооборудования, возникающие при их перегрузках или при появлении больших переходных сопротивлений.

Токи коротких замыканий могут достигать больших величин. Они способны образовать электрическую дугу, что приводит к плавлению проводов, воспламенению изоляции, а также сгораемых предметов, веществ и материалов, находящихся поблизости. Короткие замыкания могут возникать при неправильном подборе и монтаже электросетей и электрооборудования, износе, старении и повреждении изоляции электропроводов и оборудования.

Перегрузки электрических сетей, машин и аппаратов возникают при токовой нагрузке, которая в течение длительного времени превышает величины, допускаемые нормами. Перегрузки возникают также в результате нарушения нормативных требований при проектировании электроснабжения и несоблюдения правил эксплуатации;

б) тепло, выделяющееся при трении во время скольжения подшипников, дисков, ременных передач, а также при выходе газов под высоким давлением и с большой скоростью через малые отверстия;

в) искры, образующиеся при ударах металлических деталей друг о друга или об абразивный инструмент, как, например, удары Лопастей вентилятора о кожух, образование искр при обработке металлов абразивным инструментом и т. п.;

г) тепло, выделяющееся при химическом взаимодействии некоторых веществ и материалов, например, щелочных металлов с водой, окислителей с горючими веществами, а также при самовозгорании веществ, например, промасляной обтирочной ветоши или спецодежды;

д) искровые разряды статического электричества;

е) пламя, лучистая теплота, а также искры, образующиеся, например, при плавке металла и заливке литейных форм, при работе термических печей, закалочных ванн;

ж) искры, образующиеся при электро- и газосварочных работах.

Возникновение пожара возможно предотвратить путем осуществления соответствующих инженерно-технических мероприятий при проектировании и эксплуатации технологического оборудования, энергетических и санитарно-технических установок, а также соблюдением установленных правил и требований пожарной безопасности.

Важнейшими пожарно-профилактическими мероприятиями являются:

правильный выбор электрооборудования и способов его монтажа с учетом пожароопасности окружающей среды, систематический контроль исправности защитных аппаратов и устройств на электрооборудовании, постоянный надзор за эксплуатацией электроустановок и электросетей силами электротехнического персонала;

предупреждение перегрева подшипников, трущихся деталей и механизмов путем своевременной и качественной смазки, контроля за температурой и т. д.;

оборудование эффективной вентиляции, исключающей возможность образования в помещении взрывоопасной смеси, и обеспечение нормальной работы вентиляции в окрасочных и сушильных камерах и других аппаратах;

создание условий, обеспечивающих пожарную безопасность при работе с нагретыми до высокой температуры изделиями и расплавленным металлом, при сварочных и других огневых работах;

изолирование огнедействующих производственных установок и отопительных приборов от сгораемых конструкций и материалов, а также соблюдение режима их эксплуатации;

обеспечение надежной герметизации производственного оборудования и турбопроводов с огнеопасными продуктами и немедленное устранение неисправностей при выявлении утечек продуктов в окружающую среду;

запрещение хранения, транспортирования и содержания на рабочих местах огнеопасных жидкостей и растворов в открытых емкостях (в ведрах, открытых баках и т. п.);

изоляция самовозгорающихся веществ от других веществ и материалов, выполнение правил безопасного их хранения и систематическое контролирование состояния этих веществ;

предупреждение появления искровых разрядов статического электричества при обработке материалов или использовании жидкостей, склонных к электризации;

своевременное удаление промасленных обтирочных материалов и огнеопасных производственных отходов в специальные отведенные для этого места;

проведение разъяснительной работы среди рабочих и служащих по соблюдению правил пожарной безопасности.

При разработке и осуществлении мероприятий по устранению причин возникновения пожаров особое внимание следует уделять пожароопасным производственным цехам и участкам (лакокрасочных покрытий, деревообработки и др.). В этих цехах и на участках необходимо широко применять приборы и аппараты автоматического регулирования параметров, которые влияют на снижение пожарной опасности технологического процесса производства.


Рис. 9. Классификация источников зажигания

Следует отметить, что приведенные классификации весьма условны. Рассмотрим некоторые виды источников зажигания более подробно:

Открытое пламя обычно имеет температуру 800 - 1000 К, а при горении отдельных видов горючих веществ достигает 3000 К. Так, например, температура пламени зависит от вида горючего вещества и условий горения и может меняться в широких пределах:

Открытое пламя во всех случаях приводит к воспламенению горючих газо-, паро- и пылевоздушных смесей, так как его минимальная температура 870-970 ºК, что всегда выше температуры самовоспламенения известных горючих веществ. Практически для воспламенения горючей смеси надо гораздо меньше теплоты, чем та, которую содержит любое пламя любого размера. Для воспламенения твердых веществ помимо высокой температуры требуется более длительное воздействие пламени. Так, например, термит, температура горения которого около 3300 К, за две секунды прожигает сосновую доску толщиной 15 мм насквозь, но не зажигает ее. В то же время пламя объемом всего один см 3 с температурой 1200 К при воздействии в течение 15-20 с воспламеняет ее.

Открытое пламя часто является источником большого количества лучистой энергии.

Топочные искры образуются при сжигании топлива. Искры возникают в результате различных причин, обусловленных несовершенством оборудования и организации самого процесса горения. Температура таких искр достаточно высокая - более 1000 К. Искры способны воспламенять только подготовленные к горению газопаровоздушные смеси, осевшую горючую пыль, пролитые жидкости и т.п.

Искры трения и соударения образуются при соударении или трении деталей машин и оборудования, инструментов, твердых предметов и т.п. При этом происходит механическое разрушение поверхности материала и отрыв различных по величине частичек разогретого вещества, чаще всего металла. Высокая начальная температура и скорость окисления этих частичек предопределяет их способность разогреваться во время полета. При соударении стальных деталей с содержанием углерода до 0,8 % максимальная начальная температура обрывающихся частиц не ниже 1600 К. Окисление металлических частичек, как и всякая реакция окисления, происходит с выделением теплоты. При оптимальных соотношениях температуры частицы, скорости движения и скорости образования на ее поверхности оксидной пленки может произойти воспламенение окружающей горючей среды. Большую роль при этом играет продолжительность соприкосновения такой искры с горючей смесью. Так, например, время существования искр от трения стали о наждачный камень не превышает в среднем одной секунды, а их температура - не выше 870- 970 К. Такие искры не могут воспламенить природный газ, у которого период индукции равен нескольким секундам при самовоспламенении. Если время жизни этих искр увеличить до трех секунд, то природный газ воспламенится.

До недавнего времени считалось, что истирание таких мягких металлов, как медь и алюминий, не может приводить к пожароопасному искрообразованию. Однако оказалось, что они в определенных условиях могут давать опасные искры. И наоборот, многие металлы и сплавы при истирании не дают пожароопасных искр с высокой энергией.

Способность металлов и сплавов к фрикционному искрообразованию обуславливается, в первую очередь, их химической природой, а не твердостью.

Особый характер имеет искрообразование при соударении и трении алюминиевых деталей со стальными поверхностями, покрытыми ржавчиной. В этом случае протекает термитная химическая реакция с выделением большого количества теплоты:

Fе 2 О 3 + FeO = Fе 3 O 4 – ржавчина

8А1 + 3Fе 3 O 4 ® 4Аl 2 O 3 + 9Fe + 3340 кДж

Разряды статического электричества возникают в результате электризации.Электризация - это разделение положительных и отрицательных зарядов. В настоящее время нет единой теории статического электричества, а существует ряд гипотез. Наиболее распространена гипотеза о контактной электризации жидких и твердых веществ. Электризация возникает при трении двух разнородных веществ, обладающих различными атомными и молекулярными силами притяжения на поверхности соприкосновения. По крайней мере одно из них должно быть диэлектриком. При этом происходит перераспределение электронов и ионов вещества, образующих двойной электрический слой с зарядами противоположных знаков.

Пары и газы электризуются только в том случае, если в них присутствуют твердые или жидкие примеси, либо продукты конденсации. Наэлектризованные тела несут заряды статического электричества и оказывают силовое воздействие друг на друга. В окружающем их пространстве образуется электрическое поле, воздействие которого обнаруживается при внесении в него заряженных или нейтральных тел. Основными его параметрами являютсянапряженность и потенциал отдельных точек. В ряде производств потенциал относительно земли достигает огромных значений. Например, при фильтрации бензина с асфальтом через шелк - 335 кВ. Токи составляют несколько микроампер.

Разряд статического электричества возникает тогда, когда напряженность электростатического поля над поверхностью диэлектрика или проводника достигает критического, пробивного напряжения. Для воздуха пробивное напряжение составляет 3×10 3 В/мм. Статическое электричество может вызвать воспламенение при следующих условиях;

Наличии источников статических зарядов;

Накоплении значительных зарядов на контактирующих поверхностях;

Достаточной разности потенциалов для электрического пробоя среды;

Возможности возникновения электрических разрядов.

Статическое электричество может накапливаться на человеке. Заряд может достигать 15 кВ, а энергия разряда - от 2,5 до 7,5 мДж.

Разряды атмосферного электричества - это электрические разряды в атмосфере между отрицательно заряженным облаком и землей. Молния имеет следующие параметры: сила тока - до 100 кА, напряжение - несколько миллионов вольт, температура - до 30 000 К. Действие молнии - тепловое, силовое и химическое. Длительность разряда – до 0,1 мс, энергия разряда - в среднем 100 МДж. Воздействие молнии обычно двоякое; прямой удар и вторичные проявления (электростатическая индукция). Прямой удар прожигает стальной лист толщиной до 4 мм. Вторичные проявления характеризуются возникновением на больших металлических массах (крыши домов, технологическое оборудование и т.п.) многочисленных искровых разрядов, индуцированных молнией. Энергия их может превышать 250 мДж.

Несмотря на многочисленность источников зажигания, все они по своей природе могут быть разделены на несколько основных видов. Зажигание такими из них, как топочные, фрикционные искры, частички расплавленного металла и т.п. носит тепловую природу и описывается теоретическими представлениями, рассмотренными выше. Электрические искры имеют свои отличительные особенности, поэтому их необходимо рассмотреть отдельно.


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав